1
0
mirror of https://github.com/newnius/YAO-optimizer.git synced 2025-06-06 22:51:55 +00:00
YAO-optimizer/serve.py

264 lines
8.4 KiB
Python
Raw Normal View History

2020-04-29 14:18:18 +00:00
#!/usr/bin/python
from threading import Thread
from threading import Lock
from http.server import BaseHTTPRequestHandler, HTTPServer
import cgi
import json
from urllib import parse
2020-04-29 14:29:32 +00:00
import pandas as pd
import numpy as np
import os
from sklearn.model_selection import train_test_split
from model_tensorflow import train, predict
2020-04-29 15:22:56 +00:00
import csv
2020-04-29 14:18:18 +00:00
2020-04-29 14:29:32 +00:00
class Config:
feature_columns = list([2, 5])
label_columns = [5]
feature_and_label_columns = feature_columns + label_columns
label_in_feature_columns = (lambda x, y: [x.index(i) for i in y])(feature_columns, label_columns)
predict_day = 1
input_size = len(feature_columns)
output_size = len(label_columns)
hidden_size = 128
lstm_layers = 2
dropout_rate = 0.2
time_step = 20
do_train = True
do_predict = True
add_train = False
shuffle_train_data = True
train_data_rate = 0.95
valid_data_rate = 0.15
batch_size = 64
learning_rate = 0.001
epoch = 20
patience = 5
random_seed = 42
do_continue_train = False
continue_flag = ""
if do_continue_train:
shuffle_train_data = False
batch_size = 1
continue_flag = "continue_"
2020-04-29 15:22:56 +00:00
train_data_path = "./data.csv"
2020-04-29 14:29:32 +00:00
model_save_path = "./checkpoint/"
figure_save_path = "./figure/"
do_figure_save = False
if not os.path.exists(model_save_path):
os.mkdir(model_save_path)
if not os.path.exists(figure_save_path):
os.mkdir(figure_save_path)
2020-04-29 14:54:37 +00:00
used_frame = "tensorflow"
2020-04-29 14:29:32 +00:00
model_postfix = {"pytorch": ".pth", "keras": ".h5", "tensorflow": ".ckpt"}
model_name = "model_" + continue_flag + used_frame + model_postfix[used_frame]
class Data:
def __init__(self, config):
self.config = config
self.data, self.data_column_name = self.read_data()
self.data_num = self.data.shape[0]
self.train_num = int(self.data_num * self.config.train_data_rate)
self.mean = np.mean(self.data, axis=0)
self.std = np.std(self.data, axis=0)
self.norm_data = (self.data - self.mean) / self.std
self.start_num_in_test = 0
def read_data(self):
init_data = pd.read_csv(self.config.train_data_path,
usecols=self.config.feature_and_label_columns)
return init_data.values, init_data.columns.tolist()
def get_train_and_valid_data(self):
feature_data = self.norm_data[:self.train_num]
label_data = self.norm_data[self.config.predict_day: self.config.predict_day + self.train_num,
self.config.label_in_feature_columns]
if not self.config.do_continue_train:
train_x = [feature_data[i:i + self.config.time_step] for i in range(self.train_num - self.config.time_step)]
train_y = [label_data[i:i + self.config.time_step] for i in range(self.train_num - self.config.time_step)]
else:
train_x = [
feature_data[start_index + i * self.config.time_step: start_index + (i + 1) * self.config.time_step]
for start_index in range(self.config.time_step)
for i in range((self.train_num - start_index) // self.config.time_step)]
train_y = [
label_data[start_index + i * self.config.time_step: start_index + (i + 1) * self.config.time_step]
for start_index in range(self.config.time_step)
for i in range((self.train_num - start_index) // self.config.time_step)]
train_x, train_y = np.array(train_x), np.array(train_y)
train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y, test_size=self.config.valid_data_rate,
random_state=self.config.random_seed,
shuffle=self.config.shuffle_train_data)
return train_x, valid_x, train_y, valid_y
def get_test_data(self, return_label_data=False):
feature_data = self.norm_data[self.train_num:]
self.start_num_in_test = feature_data.shape[0] % self.config.time_step
time_step_size = feature_data.shape[0] // self.config.time_step
test_x = [feature_data[self.start_num_in_test + i * self.config.time_step: self.start_num_in_test + (
i + 1) * self.config.time_step]
for i in range(time_step_size)]
if return_label_data:
label_data = self.norm_data[self.train_num + self.start_num_in_test:, self.config.label_in_feature_columns]
return np.array(test_x), label_data
return np.array(test_x)
def draw(config, origin_data, predict_norm_data):
label_norm_data = origin_data.norm_data[origin_data.train_num + origin_data.start_num_in_test:,
config.label_in_feature_columns]
assert label_norm_data.shape[0] == predict_norm_data.shape[
0], "The element number in origin and predicted data is different"
label_name = [origin_data.data_column_name[i] for i in config.label_in_feature_columns]
label_column_num = len(config.label_columns)
loss = np.mean((label_norm_data[config.predict_day:] - predict_norm_data[:-config.predict_day]) ** 2, axis=0)
print("The mean squared error of stock {} is ".format(label_name), loss)
label_X = range(origin_data.data_num - origin_data.train_num - origin_data.start_num_in_test)
predict_X = [x + config.predict_day for x in label_X]
label_data = label_norm_data * origin_data.std[config.label_in_feature_columns] + \
origin_data.mean[config.label_in_feature_columns]
predict_data = predict_norm_data * origin_data.std[config.label_in_feature_columns] + \
origin_data.mean[config.label_in_feature_columns]
print(label_data)
print(predict_data)
2020-04-29 14:55:26 +00:00
PORT_NUMBER = 8080
2020-04-29 14:18:18 +00:00
lock = Lock()
2020-04-29 14:29:32 +00:00
config = Config()
2020-04-29 14:18:18 +00:00
2020-04-29 15:22:56 +00:00
def train_models(records):
2020-04-29 14:18:18 +00:00
lock.acquire()
2020-04-29 15:22:56 +00:00
with open(config.train_data_path, 'w', newline='') as csvfile:
spamwriter = csv.writer(
csvfile, delimiter=' ',
quotechar='|', quoting=csv.QUOTE_MINIMAL
)
spamwriter.writerow(["Job", "Time", "GPU", "Pre", "Main", "Post"])
for record in records:
print(record)
spamwriter.writerow(record)
2020-04-29 14:29:32 +00:00
np.random.seed(config.random_seed)
data_gainer = Data(config)
train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data()
train(config, train_X, train_Y, valid_X, valid_Y)
2020-04-29 14:18:18 +00:00
lock.release()
class MyHandler(BaseHTTPRequestHandler):
# Handler for the GET requests
def do_GET(self):
req = parse.urlparse(self.path)
query = parse.parse_qs(req.query)
if req.path == "/ping":
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes("pong", "utf-8"))
elif req.path == "/predict":
try:
job = query.get('job')[0]
gpu_model = query.get('gpu_model')[0]
time = query.get('time')[0]
2020-04-29 14:29:32 +00:00
data_gainer = Data(config)
test_X, test_Y = data_gainer.get_test_data(return_label_data=True)
pred_result = predict(config, test_X)
draw(config, data_gainer, pred_result)
msg = {'code': 1, 'error': "container not exist"}
except Exception as e:
msg = {'code': 2, 'error': str(e)}
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
elif req.path == "/train":
2020-04-29 15:22:56 +00:00
try:
data = query.get('data')[0]
records = json.load(data)
t = Thread(target=train_models, name='train_models', args=(records,))
t.start()
msg = {'code': 1, 'error': "container not exist"}
except Exception as e:
msg = {'code': 2, 'error': str(e)}
2020-04-29 14:18:18 +00:00
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
else:
self.send_error(404, 'File Not Found: %s' % self.path)
# Handler for the POST requests
def do_POST(self):
2020-04-29 14:57:56 +00:00
if self.path == "/train2":
2020-04-29 14:18:18 +00:00
form = cgi.FieldStorage(
fp=self.rfile,
headers=self.headers,
environ={
'REQUEST_METHOD': 'POST',
'CONTENT_TYPE': self.headers['Content-Type'],
})
try:
job = form.getvalue('job')[0]
data = form.getvalue('records')[0]
records = json.load(data)
t = Thread(target=train_models(), name='train_models', args=(job, records,))
t.start()
msg = {"code": 0, "error": ""}
except Exception as e:
msg = {"code": 1, "error": str(e)}
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
else:
self.send_error(404, 'File Not Found: %s' % self.path)
if __name__ == '__main__':
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), MyHandler)
print('Started http server on port ', PORT_NUMBER)
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print('^C received, shutting down the web server')
server.socket.close()