From 0339f52a39d6d7a0256483dd3e54cc05e4e28a55 Mon Sep 17 00:00:00 2001 From: Newnius Date: Fri, 1 May 2020 18:18:18 +0800 Subject: [PATCH] update --- .idea/workspace.xml | 2 +- serve.py | 36 +++++++++++++++--------------------- 2 files changed, 16 insertions(+), 22 deletions(-) diff --git a/.idea/workspace.xml b/.idea/workspace.xml index 60921e1..be99bb2 100644 --- a/.idea/workspace.xml +++ b/.idea/workspace.xml @@ -215,7 +215,7 @@ - + diff --git a/serve.py b/serve.py index 15f817d..cfec87d 100644 --- a/serve.py +++ b/serve.py @@ -137,41 +137,35 @@ class Data: # add end -def draw_yqy(config, origin_data, predict_norm_data, mean_yqy, std_yqy): - return +def draw_yqy(config2, origin_data, predict_norm_data, mean_yqy, std_yqy): label_norm_data = (origin_data - mean_yqy) / std_yqy assert label_norm_data.shape[0] == predict_norm_data.shape[ 0], "The element number in origin and predicted data is different" + print("dsa") # label_norm_data=label_norm_data[:,1] - label_names = ['pre', 'main', 'post'] + label_name = 'high' label_column_num = 1 - loss1 = \ - np.mean((label_norm_data[config.predict_day:][:, 5] - predict_norm_data[:-config.predict_day][0:]) ** 2, - axis=0)[5] - loss2 = \ - np.mean((label_norm_data[config.predict_day:][:, 6] - predict_norm_data[:-config.predict_day][0:]) ** 2, - axis=0)[6] - loss3 = \ - np.mean((label_norm_data[config.predict_day:][:, 7] - predict_norm_data[:-config.predict_day][0:]) ** 2, - axis=0)[7] - print("The mean squared error of stock {} is ".format(label_names[0]), loss1) - print("The mean squared error of stock {} is ".format(label_names[1]), loss2) - print("The mean squared error of stock {} is ".format(label_names[2]), loss3) + loss = \ + np.mean((label_norm_data[config.predict_day:][:, 1] - predict_norm_data[:-config.predict_day][0:]) ** 2, + axis=0)[1] + print("The mean squared error of stock {} is ".format(label_name), loss) # label_X = range(origin_data.data_num - origin_data.train_num - origin_data.start_num_in_test) # predict_X = [x + config.predict_day for x in label_X] - label_datas = label_norm_data * std_yqy + mean_yqy + print("2") - predict_datas = predict_norm_data * std_yqy + mean_yqy + label_data = label_norm_data[:, 1] * std_yqy[1] + mean_yqy[1] - print(label_datas) - print(predict_datas) + predict_data = predict_norm_data * std_yqy[1] + mean_yqy[1] - print(label_datas[-1]) - print(predict_datas[-1]) + print(label_data) + print(predict_data) + + print(label_data[-1]) + print(predict_data[-1]) PORT_NUMBER = 8080