mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-13 00:16:44 +00:00
add files
This commit is contained in:
24
serve.py
24
serve.py
@@ -72,15 +72,10 @@ class Data:
|
||||
self.data_num = self.data.shape[0]
|
||||
self.train_num = int(self.data_num * self.config.train_data_rate)
|
||||
|
||||
print(self.data)
|
||||
self.mean = np.mean(self.data, axis=0)
|
||||
print(1)
|
||||
|
||||
self.std = np.std(self.data, axis=0)
|
||||
print(self.std)
|
||||
print(self.mean)
|
||||
self.norm_data = (self.data - self.mean) / self.std
|
||||
print(2)
|
||||
|
||||
self.start_num_in_test = 0
|
||||
|
||||
@@ -116,15 +111,26 @@ class Data:
|
||||
return train_x, valid_x, train_y, valid_y
|
||||
|
||||
def get_test_data(self, return_label_data=False):
|
||||
feature_data = self.norm_data[self.train_num:]
|
||||
init_data = pd.read_csv(
|
||||
self.config.train_data_path,
|
||||
usecols=self.config.feature_and_label_columns
|
||||
)
|
||||
data, data_column_name = init_data.values, init_data.columns.tolist()
|
||||
train_num = 0
|
||||
mean = np.mean(data, axis=0)
|
||||
std = np.std(data, axis=0)
|
||||
norm_data = (data - mean) / std
|
||||
start_num_in_test = 0
|
||||
|
||||
feature_data = norm_data[0:]
|
||||
self.start_num_in_test = feature_data.shape[0] % self.config.time_step
|
||||
time_step_size = feature_data.shape[0] // self.config.time_step
|
||||
|
||||
test_x = [feature_data[self.start_num_in_test + i * self.config.time_step: self.start_num_in_test + (
|
||||
test_x = [feature_data[start_num_in_test + i * self.config.time_step: start_num_in_test + (
|
||||
i + 1) * self.config.time_step]
|
||||
for i in range(time_step_size)]
|
||||
if return_label_data:
|
||||
label_data = self.norm_data[self.train_num + self.start_num_in_test:, self.config.label_in_feature_columns]
|
||||
label_data = norm_data[train_num + start_num_in_test:, self.config.label_in_feature_columns]
|
||||
return np.array(test_x), label_data
|
||||
return np.array(test_x)
|
||||
|
||||
@@ -191,7 +197,7 @@ class MyHandler(BaseHTTPRequestHandler):
|
||||
gpu_model = query.get('gpu_model')[0]
|
||||
time = query.get('time')[0]
|
||||
data_gainer = Data(config)
|
||||
test_X, test_Y = np.array([[job, gpu_model, time]]), np.array([[1,1,1]]) #data_gainer.get_test_data(return_label_data=True)
|
||||
test_X, test_Y = data_gainer.get_test_data(return_label_data=True)
|
||||
print(test_X, test_Y)
|
||||
pred_result = predict(config, test_X)
|
||||
print(pred_result)
|
||||
|
||||
Reference in New Issue
Block a user