1
0
mirror of https://github.com/newnius/YAO-optimizer.git synced 2025-12-15 17:06:44 +00:00
This commit is contained in:
2020-05-02 18:51:16 +08:00
parent 7b73422b25
commit 2405d14dcf
2 changed files with 43 additions and 57 deletions

View File

@@ -20,6 +20,7 @@ from math import sqrt
import numpy
import random
import traceback
from keras.models import load_model
PORT_NUMBER = 8080
lock = Lock()
@@ -125,7 +126,8 @@ def train_models(job):
train_trimmed = train_scaled[t1:, :]
model = fit_lstm(train_trimmed, batch_size, 30, 4)
models[job]['model'] = model
model.saver.save('./data/checkpoint-' + job)
models[job]['scaler'] = scaler
models[job]['batch_size'] = batch_size
@@ -142,6 +144,7 @@ def predict(job, seq):
'seq': seq,
'value': 0,
}
model = load_model('./data/checkpoint-' + job)
file = './data/' + job + '.' + str(random.randint(1000, 9999)) + '.csv'
df = pd.read_csv('./data/' + job + '.csv', usecols=['seq', 'value'])
@@ -176,7 +179,7 @@ def predict(job, seq):
# forecast the entire training dataset to build up state for forecasting
test_reshaped = test_scaled[:, 0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag)
output = models[job]['model'].predict(test_reshaped, batch_size=batch_size)
output = model.predict(test_reshaped, batch_size=batch_size)
predictions = list()
for i in range(len(output)):
yhat = output[i, 0]