mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-15 17:06:44 +00:00
update
This commit is contained in:
7
serve.py
7
serve.py
@@ -20,6 +20,7 @@ from math import sqrt
|
||||
import numpy
|
||||
import random
|
||||
import traceback
|
||||
from keras.models import load_model
|
||||
|
||||
PORT_NUMBER = 8080
|
||||
lock = Lock()
|
||||
@@ -125,7 +126,8 @@ def train_models(job):
|
||||
train_trimmed = train_scaled[t1:, :]
|
||||
model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
||||
|
||||
models[job]['model'] = model
|
||||
model.saver.save('./data/checkpoint-' + job)
|
||||
|
||||
models[job]['scaler'] = scaler
|
||||
models[job]['batch_size'] = batch_size
|
||||
|
||||
@@ -142,6 +144,7 @@ def predict(job, seq):
|
||||
'seq': seq,
|
||||
'value': 0,
|
||||
}
|
||||
model = load_model('./data/checkpoint-' + job)
|
||||
|
||||
file = './data/' + job + '.' + str(random.randint(1000, 9999)) + '.csv'
|
||||
df = pd.read_csv('./data/' + job + '.csv', usecols=['seq', 'value'])
|
||||
@@ -176,7 +179,7 @@ def predict(job, seq):
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
test_reshaped = test_scaled[:, 0:-1]
|
||||
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag)
|
||||
output = models[job]['model'].predict(test_reshaped, batch_size=batch_size)
|
||||
output = model.predict(test_reshaped, batch_size=batch_size)
|
||||
predictions = list()
|
||||
for i in range(len(output)):
|
||||
yhat = output[i, 0]
|
||||
|
||||
Reference in New Issue
Block a user