1
0
mirror of https://github.com/newnius/YAO-optimizer.git synced 2025-06-06 22:51:55 +00:00

add files

This commit is contained in:
Newnius 2020-04-29 19:01:01 +08:00
parent 906f3388a5
commit 2613b50330
3 changed files with 10 additions and 10 deletions

View File

@ -151,7 +151,7 @@
<component name="PropertiesComponent">
<property name="WebServerToolWindowFactoryState" value="false" />
<property name="aspect.path.notification.shown" value="true" />
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588157865997" />
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588157914652" />
<property name="go.gopath.indexing.explicitly.defined" value="true" />
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
<property name="nodejs_npm_path_reset_for_default_project" value="true" />

View File

@ -164,11 +164,11 @@ def main(config):
if config.do_train:
train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data()
model = train(config, train_X, train_Y, valid_X, valid_Y)
train(config, train_X, train_Y, valid_X, valid_Y)
if config.do_predict:
test_X, test_Y = data_gainer.get_test_data(return_label_data=True)
pred_result = predict(config, test_X, model)
pred_result = predict(config, test_X)
draw(config, data_gainer, pred_result)

View File

@ -76,19 +76,19 @@ def train(config, train_X, train_Y, valid_X, valid_Y):
if bad_epoch >= config.patience:
print(" The training stops early in epoch {}".format(epoch))
break
return model
def predict(config, test_X, model):
def predict(config, test_X):
config.dropout_rate = 0.1
tf.reset_default_graph()
#with tf.variable_scope("stock_predict", reuse=tf.AUTO_REUSE):
# model = Model(config)
with tf.variable_scope("stock_predict", reuse=tf.AUTO_REUSE):
model = Model(config)
test_len = len(test_X)
with tf.Session() as sess:
#module_file = tf.train.latest_checkpoint(config.model_save_path)
#model.saver.restore(sess, module_file)
module_file = tf.train.latest_checkpoint(config.model_save_path)
model.saver.restore(sess, module_file)
result = np.zeros((test_len * config.time_step, config.output_size))
for step in range(test_len):