mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-15 17:06:44 +00:00
update
This commit is contained in:
16
serve.py
16
serve.py
@@ -97,11 +97,7 @@ def train_models(job):
|
||||
# transform data to be supervised learning
|
||||
lag = 4
|
||||
supervised = timeseries_to_supervised(diff_values, lag)
|
||||
print(supervised)
|
||||
print(type(supervised))
|
||||
print(supervised.shape)
|
||||
supervised_values = supervised.values
|
||||
print(supervised_values)
|
||||
|
||||
batch_size = 32
|
||||
if supervised_values.shape[0] < 100:
|
||||
@@ -161,21 +157,13 @@ def predict(job, seq):
|
||||
|
||||
# transform data to be stationary
|
||||
raw_values = df.values
|
||||
print(raw_values)
|
||||
diff_values = difference(raw_values, 1)
|
||||
print(diff_values)
|
||||
|
||||
# transform data to be supervised learning
|
||||
lag = 4
|
||||
supervised = timeseries_to_supervised(diff_values, lag)
|
||||
print(type(supervised))
|
||||
print(supervised)
|
||||
supervised_values = supervised[-batch_size:]
|
||||
print(type(supervised_values))
|
||||
print(supervised_values)
|
||||
print(supervised_values.shape)
|
||||
test = supervised_values.values
|
||||
print(test)
|
||||
|
||||
test = test.reshape(test.shape[0], test.shape[1])
|
||||
test_scaled = scaler.transform(test)
|
||||
@@ -198,7 +186,7 @@ def predict(job, seq):
|
||||
|
||||
rmse = sqrt(mean_squared_error(raw_values[-batch_size:], predictions))
|
||||
print(predictions, raw_values[-batch_size:])
|
||||
return 1, True
|
||||
return predictions[-1], True
|
||||
|
||||
|
||||
class MyHandler(BaseHTTPRequestHandler):
|
||||
@@ -223,6 +211,8 @@ class MyHandler(BaseHTTPRequestHandler):
|
||||
|
||||
if not success:
|
||||
msg = {'code': 2, 'error': "Job " + job + " not exist"}
|
||||
else:
|
||||
msg = {'code': 2, 'error': "", "total": pred}
|
||||
except Exception as e:
|
||||
track = traceback.format_exc()
|
||||
print(track)
|
||||
|
||||
Reference in New Issue
Block a user