mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-07 15:11:56 +00:00
add files
This commit is contained in:
parent
43210efed9
commit
5507bd66a8
@ -181,7 +181,7 @@
|
||||
<component name="PropertiesComponent">
|
||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||
<property name="aspect.path.notification.shown" value="true" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588169908975" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588169942720" />
|
||||
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
||||
@ -190,6 +190,12 @@
|
||||
<property name="project.structure.side.proportion" value="0.0" />
|
||||
<property name="settings.editor.selected.configurable" value="http.proxy" />
|
||||
</component>
|
||||
<component name="RecentsManager">
|
||||
<key name="MoveFile.RECENT_KEYS">
|
||||
<recent name="$PROJECT_DIR$" />
|
||||
<recent name="$PROJECT_DIR$/model" />
|
||||
</key>
|
||||
</component>
|
||||
<component name="RunDashboard">
|
||||
<option name="ruleStates">
|
||||
<list>
|
||||
|
10
main.py
10
main.py
@ -4,9 +4,11 @@ import os
|
||||
from sklearn.model_selection import train_test_split
|
||||
from model_tensorflow import train, predict
|
||||
|
||||
frame = "tensorflow"
|
||||
|
||||
|
||||
class Config:
|
||||
feature_columns = list([2,5])
|
||||
feature_columns = list([2, 5])
|
||||
label_columns = [5]
|
||||
feature_and_label_columns = feature_columns + label_columns
|
||||
label_in_feature_columns = (lambda x, y: [x.index(i) for i in y])(feature_columns, label_columns)
|
||||
@ -51,9 +53,9 @@ class Config:
|
||||
if not os.path.exists(figure_save_path):
|
||||
os.mkdir(figure_save_path)
|
||||
|
||||
#used_frame = frame
|
||||
#model_postfix = {"pytorch": ".pth", "keras": ".h5", "tensorflow": ".ckpt"}
|
||||
#model_name = "model_" + continue_flag + used_frame + model_postfix[used_frame]
|
||||
used_frame = frame
|
||||
model_postfix = {"pytorch": ".pth", "keras": ".h5", "tensorflow": ".ckpt"}
|
||||
model_name = "model_" + continue_flag + used_frame + model_postfix[used_frame]
|
||||
|
||||
|
||||
class Data:
|
||||
|
166
serve.py
166
serve.py
@ -5,14 +5,159 @@ from http.server import BaseHTTPRequestHandler, HTTPServer
|
||||
import cgi
|
||||
import json
|
||||
from urllib import parse
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
from sklearn.model_selection import train_test_split
|
||||
from model_tensorflow import train, predict
|
||||
|
||||
|
||||
class Config:
|
||||
feature_columns = list([2, 5])
|
||||
label_columns = [5]
|
||||
feature_and_label_columns = feature_columns + label_columns
|
||||
label_in_feature_columns = (lambda x, y: [x.index(i) for i in y])(feature_columns, label_columns)
|
||||
|
||||
predict_day = 1
|
||||
|
||||
input_size = len(feature_columns)
|
||||
output_size = len(label_columns)
|
||||
|
||||
hidden_size = 128
|
||||
lstm_layers = 2
|
||||
dropout_rate = 0.2
|
||||
time_step = 20
|
||||
|
||||
do_train = True
|
||||
do_predict = True
|
||||
add_train = False
|
||||
shuffle_train_data = True
|
||||
|
||||
train_data_rate = 0.95
|
||||
valid_data_rate = 0.15
|
||||
|
||||
batch_size = 64
|
||||
learning_rate = 0.001
|
||||
epoch = 20
|
||||
patience = 5
|
||||
random_seed = 42
|
||||
|
||||
do_continue_train = False
|
||||
continue_flag = ""
|
||||
if do_continue_train:
|
||||
shuffle_train_data = False
|
||||
batch_size = 1
|
||||
continue_flag = "continue_"
|
||||
|
||||
train_data_path = "./data/stock_data.csv"
|
||||
model_save_path = "./checkpoint/"
|
||||
figure_save_path = "./figure/"
|
||||
do_figure_save = False
|
||||
if not os.path.exists(model_save_path):
|
||||
os.mkdir(model_save_path)
|
||||
if not os.path.exists(figure_save_path):
|
||||
os.mkdir(figure_save_path)
|
||||
|
||||
used_frame = frame
|
||||
model_postfix = {"pytorch": ".pth", "keras": ".h5", "tensorflow": ".ckpt"}
|
||||
model_name = "model_" + continue_flag + used_frame + model_postfix[used_frame]
|
||||
|
||||
|
||||
class Data:
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.data, self.data_column_name = self.read_data()
|
||||
|
||||
self.data_num = self.data.shape[0]
|
||||
self.train_num = int(self.data_num * self.config.train_data_rate)
|
||||
|
||||
self.mean = np.mean(self.data, axis=0)
|
||||
self.std = np.std(self.data, axis=0)
|
||||
self.norm_data = (self.data - self.mean) / self.std
|
||||
|
||||
self.start_num_in_test = 0
|
||||
|
||||
def read_data(self):
|
||||
init_data = pd.read_csv(self.config.train_data_path,
|
||||
usecols=self.config.feature_and_label_columns)
|
||||
return init_data.values, init_data.columns.tolist()
|
||||
|
||||
def get_train_and_valid_data(self):
|
||||
feature_data = self.norm_data[:self.train_num]
|
||||
label_data = self.norm_data[self.config.predict_day: self.config.predict_day + self.train_num,
|
||||
self.config.label_in_feature_columns]
|
||||
if not self.config.do_continue_train:
|
||||
train_x = [feature_data[i:i + self.config.time_step] for i in range(self.train_num - self.config.time_step)]
|
||||
train_y = [label_data[i:i + self.config.time_step] for i in range(self.train_num - self.config.time_step)]
|
||||
else:
|
||||
train_x = [
|
||||
feature_data[start_index + i * self.config.time_step: start_index + (i + 1) * self.config.time_step]
|
||||
for start_index in range(self.config.time_step)
|
||||
for i in range((self.train_num - start_index) // self.config.time_step)]
|
||||
train_y = [
|
||||
label_data[start_index + i * self.config.time_step: start_index + (i + 1) * self.config.time_step]
|
||||
for start_index in range(self.config.time_step)
|
||||
for i in range((self.train_num - start_index) // self.config.time_step)]
|
||||
|
||||
train_x, train_y = np.array(train_x), np.array(train_y)
|
||||
|
||||
train_x, valid_x, train_y, valid_y = train_test_split(train_x, train_y, test_size=self.config.valid_data_rate,
|
||||
random_state=self.config.random_seed,
|
||||
shuffle=self.config.shuffle_train_data)
|
||||
return train_x, valid_x, train_y, valid_y
|
||||
|
||||
def get_test_data(self, return_label_data=False):
|
||||
feature_data = self.norm_data[self.train_num:]
|
||||
self.start_num_in_test = feature_data.shape[0] % self.config.time_step
|
||||
time_step_size = feature_data.shape[0] // self.config.time_step
|
||||
|
||||
test_x = [feature_data[self.start_num_in_test + i * self.config.time_step: self.start_num_in_test + (
|
||||
i + 1) * self.config.time_step]
|
||||
for i in range(time_step_size)]
|
||||
if return_label_data:
|
||||
label_data = self.norm_data[self.train_num + self.start_num_in_test:, self.config.label_in_feature_columns]
|
||||
return np.array(test_x), label_data
|
||||
return np.array(test_x)
|
||||
|
||||
|
||||
def draw(config, origin_data, predict_norm_data):
|
||||
label_norm_data = origin_data.norm_data[origin_data.train_num + origin_data.start_num_in_test:,
|
||||
config.label_in_feature_columns]
|
||||
assert label_norm_data.shape[0] == predict_norm_data.shape[
|
||||
0], "The element number in origin and predicted data is different"
|
||||
|
||||
label_name = [origin_data.data_column_name[i] for i in config.label_in_feature_columns]
|
||||
label_column_num = len(config.label_columns)
|
||||
|
||||
loss = np.mean((label_norm_data[config.predict_day:] - predict_norm_data[:-config.predict_day]) ** 2, axis=0)
|
||||
print("The mean squared error of stock {} is ".format(label_name), loss)
|
||||
|
||||
label_X = range(origin_data.data_num - origin_data.train_num - origin_data.start_num_in_test)
|
||||
predict_X = [x + config.predict_day for x in label_X]
|
||||
|
||||
label_data = label_norm_data * origin_data.std[config.label_in_feature_columns] + \
|
||||
origin_data.mean[config.label_in_feature_columns]
|
||||
|
||||
predict_data = predict_norm_data * origin_data.std[config.label_in_feature_columns] + \
|
||||
origin_data.mean[config.label_in_feature_columns]
|
||||
|
||||
print(label_data)
|
||||
print(predict_data)
|
||||
|
||||
|
||||
PORT_NUMBER = 8000
|
||||
|
||||
lock = Lock()
|
||||
config = Config()
|
||||
frame = "tensorflow"
|
||||
|
||||
|
||||
def train_models():
|
||||
lock.acquire()
|
||||
np.random.seed(config.random_seed)
|
||||
data_gainer = Data(config)
|
||||
|
||||
train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data()
|
||||
train(config, train_X, train_Y, valid_X, valid_Y)
|
||||
|
||||
lock.release()
|
||||
|
||||
@ -34,6 +179,25 @@ class MyHandler(BaseHTTPRequestHandler):
|
||||
job = query.get('job')[0]
|
||||
gpu_model = query.get('gpu_model')[0]
|
||||
time = query.get('time')[0]
|
||||
data_gainer = Data(config)
|
||||
test_X, test_Y = data_gainer.get_test_data(return_label_data=True)
|
||||
pred_result = predict(config, test_X)
|
||||
draw(config, data_gainer, pred_result)
|
||||
msg = {'code': 1, 'error': "container not exist"}
|
||||
except Exception as e:
|
||||
msg = {'code': 2, 'error': str(e)}
|
||||
self.send_response(200)
|
||||
self.send_header('Content-type', 'application/json')
|
||||
self.end_headers()
|
||||
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
|
||||
|
||||
elif req.path == "/train":
|
||||
try:
|
||||
job = query.get('job')[0]
|
||||
gpu_model = query.get('gpu_model')[0]
|
||||
time = query.get('time')[0]
|
||||
t = Thread(target=train_models(), name='train_models', args=(job,))
|
||||
t.start()
|
||||
msg = {'code': 1, 'error': "container not exist"}
|
||||
except Exception as e:
|
||||
msg = {'code': 2, 'error': str(e)}
|
||||
|
Loading…
Reference in New Issue
Block a user