mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-07 07:01:56 +00:00
update
This commit is contained in:
parent
37b670e338
commit
5a71f23db5
@ -243,7 +243,7 @@
|
|||||||
<component name="PropertiesComponent">
|
<component name="PropertiesComponent">
|
||||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||||
<property name="aspect.path.notification.shown" value="true" />
|
<property name="aspect.path.notification.shown" value="true" />
|
||||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588407734896" />
|
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588407831519" />
|
||||||
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
||||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||||
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
||||||
|
12
train.py
12
train.py
@ -69,8 +69,8 @@ def fit_lstm(train, batch_size2, nb_epoch, neurons):
|
|||||||
model.compile(loss='mean_squared_error', optimizer='adam')
|
model.compile(loss='mean_squared_error', optimizer='adam')
|
||||||
for i in range(nb_epoch):
|
for i in range(nb_epoch):
|
||||||
model.fit(X, y, epochs=1, batch_size=batch_size2, verbose=0, shuffle=False)
|
model.fit(X, y, epochs=1, batch_size=batch_size2, verbose=0, shuffle=False)
|
||||||
#loss = model.evaluate(X, y)
|
# loss = model.evaluate(X, y)
|
||||||
#print("Epoch {}/{}, loss = {}".format(i, nb_epoch, loss))
|
# print("Epoch {}/{}, loss = {}".format(i, nb_epoch, loss))
|
||||||
model.reset_states()
|
model.reset_states()
|
||||||
return model
|
return model
|
||||||
|
|
||||||
@ -95,6 +95,8 @@ def experiment(repeats, series, seed):
|
|||||||
batch_size = 32
|
batch_size = 32
|
||||||
if supervised_values.shape[0] < 100:
|
if supervised_values.shape[0] < 100:
|
||||||
batch_size = 16
|
batch_size = 16
|
||||||
|
if supervised_values.shape[0] < 60:
|
||||||
|
batch_size = 8
|
||||||
test_data_num = batch_size
|
test_data_num = batch_size
|
||||||
|
|
||||||
# split data into train and test-sets
|
# split data into train and test-sets
|
||||||
@ -150,9 +152,9 @@ results = DataFrame()
|
|||||||
with_seed = experiment(repeats, series, True)
|
with_seed = experiment(repeats, series, True)
|
||||||
results['with-seed'] = with_seed
|
results['with-seed'] = with_seed
|
||||||
# without seeding
|
# without seeding
|
||||||
without_seed = experiment(repeats, series, False)
|
# without_seed = experiment(repeats, series, False)
|
||||||
results['without-seed'] = without_seed
|
# results['without-seed'] = without_seed
|
||||||
# summarize results
|
# summarize results
|
||||||
print(results.describe())
|
print(results.describe())
|
||||||
# save boxplot
|
# save boxplot
|
||||||
results.boxplot()
|
# results.boxplot()
|
||||||
|
Loading…
Reference in New Issue
Block a user