mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-07 15:11:56 +00:00
update
This commit is contained in:
parent
d500ec5877
commit
868a231f42
@ -47,7 +47,7 @@
|
||||
<counts>
|
||||
<entry key="Dockerfile" value="81" />
|
||||
<entry key="md" value="104" />
|
||||
<entry key="py" value="2445" />
|
||||
<entry key="py" value="2449" />
|
||||
<entry key="sh" value="5" />
|
||||
</counts>
|
||||
</usages-collector>
|
||||
@ -56,7 +56,7 @@
|
||||
<entry key="Bash" value="5" />
|
||||
<entry key="Dockerfile" value="81" />
|
||||
<entry key="Markdown" value="104" />
|
||||
<entry key="Python" value="2445" />
|
||||
<entry key="Python" value="2449" />
|
||||
</counts>
|
||||
</usages-collector>
|
||||
</session>
|
||||
@ -91,8 +91,8 @@
|
||||
<file pinned="false" current-in-tab="true">
|
||||
<entry file="file://$PROJECT_DIR$/train.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="185">
|
||||
<caret line="73" column="16" lean-forward="true" selection-start-line="73" selection-start-column="16" selection-end-line="73" selection-end-column="16" />
|
||||
<state relative-caret-position="257">
|
||||
<caret line="79" column="38" selection-start-line="79" selection-start-column="28" selection-end-line="79" selection-end-column="38" />
|
||||
<folding>
|
||||
<element signature="e#0#28#0" expanded="true" />
|
||||
</folding>
|
||||
@ -223,7 +223,7 @@
|
||||
<component name="PropertiesComponent">
|
||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||
<property name="aspect.path.notification.shown" value="true" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588382857916" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588383124284" />
|
||||
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
||||
@ -264,12 +264,12 @@
|
||||
<option name="presentableId" value="Default" />
|
||||
<updated>1588152877746</updated>
|
||||
<workItem from="1588152880522" duration="16973000" />
|
||||
<workItem from="1588319878551" duration="18765000" />
|
||||
<workItem from="1588319878551" duration="18998000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
<component name="TimeTrackingManager">
|
||||
<option name="totallyTimeSpent" value="35738000" />
|
||||
<option name="totallyTimeSpent" value="35971000" />
|
||||
</component>
|
||||
<component name="ToolWindowManager">
|
||||
<frame x="0" y="0" width="1280" height="800" extended-state="0" />
|
||||
@ -395,8 +395,8 @@
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/train.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="185">
|
||||
<caret line="73" column="16" lean-forward="true" selection-start-line="73" selection-start-column="16" selection-end-line="73" selection-end-column="16" />
|
||||
<state relative-caret-position="257">
|
||||
<caret line="79" column="38" selection-start-line="79" selection-start-column="28" selection-end-line="79" selection-end-column="38" />
|
||||
<folding>
|
||||
<element signature="e#0#28#0" expanded="true" />
|
||||
</folding>
|
||||
|
8
train.py
8
train.py
@ -81,6 +81,8 @@ def forecast_lstm(model, batch_size, X):
|
||||
return yhat[0, 0]
|
||||
|
||||
|
||||
batch_size = 12
|
||||
|
||||
# load dataset
|
||||
series = read_csv('data.csv', header=0, index_col=0, squeeze=True)
|
||||
|
||||
@ -99,17 +101,17 @@ train, test = supervised_values[0:-12], supervised_values[-12:]
|
||||
scaler, train_scaled, test_scaled = scale(train, test)
|
||||
|
||||
# fit the model
|
||||
lstm_model = fit_lstm(train_scaled, 32, 30, 4)
|
||||
lstm_model = fit_lstm(train_scaled, batch_size, 30, 4)
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
|
||||
lstm_model.predict(train_reshaped, batch_size=32)
|
||||
lstm_model.predict(train_reshaped, batch_size=batch_size)
|
||||
|
||||
# walk-forward validation on the test data
|
||||
predictions = list()
|
||||
for j in range(len(test_scaled)):
|
||||
# make one-step forecast
|
||||
X, y = test_scaled[j, 0:-1], test_scaled[j, -1]
|
||||
yhat = forecast_lstm(lstm_model, 32, X)
|
||||
yhat = forecast_lstm(lstm_model, batch_size, X)
|
||||
# invert scaling
|
||||
yhat = invert_scale(scaler, X, yhat)
|
||||
# invert differencing
|
||||
|
Loading…
Reference in New Issue
Block a user