mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-15 17:06:44 +00:00
update
This commit is contained in:
10
serve.py
10
serve.py
@@ -21,6 +21,7 @@ import numpy
|
||||
import random
|
||||
import traceback
|
||||
from keras.models import load_model
|
||||
from sklearn.externals import joblib
|
||||
|
||||
PORT_NUMBER = 8080
|
||||
lock = Lock()
|
||||
@@ -127,8 +128,9 @@ def train_models(job):
|
||||
model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
||||
|
||||
model.save('./data/checkpoint-' + job)
|
||||
scaler_filename = './data/checkpoint-' + job + "-scaler.save"
|
||||
joblib.dump(scaler, scaler_filename)
|
||||
|
||||
models[job]['scaler'] = scaler
|
||||
models[job]['batch_size'] = batch_size
|
||||
|
||||
models[job]['lock'].release()
|
||||
@@ -145,6 +147,8 @@ def predict(job, seq):
|
||||
'value': 0,
|
||||
}
|
||||
model = load_model('./data/checkpoint-' + job)
|
||||
scaler_filename = './data/checkpoint-' + job + "-scaler.save"
|
||||
scaler = joblib.load(scaler_filename)
|
||||
|
||||
file = './data/' + job + '.' + str(random.randint(1000, 9999)) + '.csv'
|
||||
df = pd.read_csv('./data/' + job + '.csv', usecols=['seq', 'value'])
|
||||
@@ -174,7 +178,7 @@ def predict(job, seq):
|
||||
print(test)
|
||||
|
||||
test = test.reshape(test.shape[0], test.shape[1])
|
||||
test_scaled = models[job]['scaler'].transform(test)
|
||||
test_scaled = scaler.transform(test)
|
||||
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
test_reshaped = test_scaled[:, 0:-1]
|
||||
@@ -185,7 +189,7 @@ def predict(job, seq):
|
||||
yhat = output[i, 0]
|
||||
X = test_scaled[i, 0:-1]
|
||||
# invert scaling
|
||||
yhat = invert_scale(models[job]['scaler'], X, yhat)
|
||||
yhat = invert_scale(scaler, X, yhat)
|
||||
# invert differencing
|
||||
yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
|
||||
# store forecast
|
||||
|
||||
Reference in New Issue
Block a user