mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-13 08:26:43 +00:00
update
This commit is contained in:
8
train.py
8
train.py
@@ -70,6 +70,7 @@ def fit_lstm(train, batch_size, nb_epoch, neurons):
|
||||
model.add(Dense(1))
|
||||
model.compile(loss='mean_squared_error', optimizer='adam')
|
||||
for i in range(nb_epoch):
|
||||
print("Epoch {}/{}".format(i, nb_epoch))
|
||||
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
|
||||
model.reset_states()
|
||||
return model
|
||||
@@ -99,8 +100,13 @@ def experiment(repeats, series, seed):
|
||||
for r in range(repeats):
|
||||
# fit the model
|
||||
batch_size = 4
|
||||
t = train.shape[0] % batch_size
|
||||
train = train[train.shape[0] - t * batch_size:]
|
||||
test = test.shape[0] % batch_size
|
||||
test = test[test.shape[0] - t * batch_size:]
|
||||
|
||||
train_trimmed = train_scaled[2:, :]
|
||||
lstm_model = fit_lstm(train_trimmed, batch_size, 3000, 4)
|
||||
lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
if seed:
|
||||
train_reshaped = train_trimmed[:, 0].reshape(len(train_trimmed), 1, 1)
|
||||
|
||||
Reference in New Issue
Block a user