mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-13 08:26:43 +00:00
update
This commit is contained in:
2
.idea/workspace.xml
generated
2
.idea/workspace.xml
generated
@@ -221,7 +221,7 @@
|
|||||||
<component name="PropertiesComponent">
|
<component name="PropertiesComponent">
|
||||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||||
<property name="aspect.path.notification.shown" value="true" />
|
<property name="aspect.path.notification.shown" value="true" />
|
||||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588384828302" />
|
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588385985992" />
|
||||||
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
||||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||||
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
||||||
|
|||||||
8
train.py
8
train.py
@@ -70,6 +70,7 @@ def fit_lstm(train, batch_size, nb_epoch, neurons):
|
|||||||
model.add(Dense(1))
|
model.add(Dense(1))
|
||||||
model.compile(loss='mean_squared_error', optimizer='adam')
|
model.compile(loss='mean_squared_error', optimizer='adam')
|
||||||
for i in range(nb_epoch):
|
for i in range(nb_epoch):
|
||||||
|
print("Epoch {}/{}".format(i, nb_epoch))
|
||||||
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
|
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
|
||||||
model.reset_states()
|
model.reset_states()
|
||||||
return model
|
return model
|
||||||
@@ -99,8 +100,13 @@ def experiment(repeats, series, seed):
|
|||||||
for r in range(repeats):
|
for r in range(repeats):
|
||||||
# fit the model
|
# fit the model
|
||||||
batch_size = 4
|
batch_size = 4
|
||||||
|
t = train.shape[0] % batch_size
|
||||||
|
train = train[train.shape[0] - t * batch_size:]
|
||||||
|
test = test.shape[0] % batch_size
|
||||||
|
test = test[test.shape[0] - t * batch_size:]
|
||||||
|
|
||||||
train_trimmed = train_scaled[2:, :]
|
train_trimmed = train_scaled[2:, :]
|
||||||
lstm_model = fit_lstm(train_trimmed, batch_size, 3000, 4)
|
lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
||||||
# forecast the entire training dataset to build up state for forecasting
|
# forecast the entire training dataset to build up state for forecasting
|
||||||
if seed:
|
if seed:
|
||||||
train_reshaped = train_trimmed[:, 0].reshape(len(train_trimmed), 1, 1)
|
train_reshaped = train_trimmed[:, 0].reshape(len(train_trimmed), 1, 1)
|
||||||
|
|||||||
Reference in New Issue
Block a user