mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-07 15:11:56 +00:00
update
This commit is contained in:
parent
4125568514
commit
b2ffd6f332
@ -223,7 +223,7 @@
|
||||
<component name="PropertiesComponent">
|
||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||
<property name="aspect.path.notification.shown" value="true" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588356266416" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588356880775" />
|
||||
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
||||
|
128
train.py
Normal file
128
train.py
Normal file
@ -0,0 +1,128 @@
|
||||
from pandas import DataFrame
|
||||
from pandas import Series
|
||||
from pandas import concat
|
||||
from pandas import read_csv
|
||||
from pandas import datetime
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense
|
||||
from keras.layers import LSTM
|
||||
from math import sqrt
|
||||
import numpy
|
||||
|
||||
|
||||
# date-time parsing function for loading the dataset
|
||||
def parser(x):
|
||||
return datetime.strptime('190' + x, '%Y-%m')
|
||||
|
||||
|
||||
# frame a sequence as a supervised learning problem
|
||||
def timeseries_to_supervised(data, lag=1):
|
||||
df = DataFrame(data)
|
||||
columns = [df.shift(i) for i in range(1, lag + 1)]
|
||||
columns.append(df)
|
||||
df = concat(columns, axis=1)
|
||||
df.fillna(0, inplace=True)
|
||||
return df
|
||||
|
||||
|
||||
# create a differenced series
|
||||
def difference(dataset, interval=1):
|
||||
diff = list()
|
||||
for i in range(interval, len(dataset)):
|
||||
value = dataset[i] - dataset[i - interval]
|
||||
diff.append(value)
|
||||
return Series(diff)
|
||||
|
||||
|
||||
# invert differenced value
|
||||
def inverse_difference(history, yhat, interval=1):
|
||||
return yhat + history[-interval]
|
||||
|
||||
|
||||
# scale train and test data to [-1, 1]
|
||||
def scale(train, test):
|
||||
# fit scaler
|
||||
scaler = MinMaxScaler(feature_range=(-1, 1))
|
||||
scaler = scaler.fit(train)
|
||||
# transform train
|
||||
train = train.reshape(train.shape[0], train.shape[1])
|
||||
train_scaled = scaler.transform(train)
|
||||
# transform test
|
||||
test = test.reshape(test.shape[0], test.shape[1])
|
||||
test_scaled = scaler.transform(test)
|
||||
return scaler, train_scaled, test_scaled
|
||||
|
||||
|
||||
# inverse scaling for a forecasted value
|
||||
def invert_scale(scaler, X, value):
|
||||
new_row = [x for x in X] + [value]
|
||||
array = numpy.array(new_row)
|
||||
array = array.reshape(1, len(array))
|
||||
inverted = scaler.inverse_transform(array)
|
||||
return inverted[0, -1]
|
||||
|
||||
|
||||
# fit an LSTM network to training data
|
||||
def fit_lstm(train, batch_size, nb_epoch, neurons):
|
||||
X, y = train[:, 0:-1], train[:, -1]
|
||||
X = X.reshape(X.shape[0], 1, X.shape[1])
|
||||
model = Sequential()
|
||||
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
|
||||
model.add(Dense(1))
|
||||
model.compile(loss='mean_squared_error', optimizer='adam')
|
||||
for i in range(nb_epoch):
|
||||
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
|
||||
model.reset_states()
|
||||
return model
|
||||
|
||||
|
||||
# make a one-step forecast
|
||||
def forecast_lstm(model, batch_size, X):
|
||||
X = X.reshape(1, 1, len(X))
|
||||
yhat = model.predict(X, batch_size=batch_size)
|
||||
return yhat[0, 0]
|
||||
|
||||
|
||||
# load dataset
|
||||
series = read_csv('data.csv', header=0, index_col=0, squeeze=True)
|
||||
|
||||
# transform data to be stationary
|
||||
raw_values = series.values
|
||||
diff_values = difference(raw_values, 1)
|
||||
|
||||
# transform data to be supervised learning
|
||||
supervised = timeseries_to_supervised(diff_values, 1)
|
||||
supervised_values = supervised.values
|
||||
|
||||
# split data into train and test-sets
|
||||
train, test = supervised_values[0:-12], supervised_values[-12:]
|
||||
|
||||
# transform the scale of the data
|
||||
scaler, train_scaled, test_scaled = scale(train, test)
|
||||
|
||||
# fit the model
|
||||
lstm_model = fit_lstm(train_scaled, 1, 3000, 4)
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
|
||||
lstm_model.predict(train_reshaped, batch_size=1)
|
||||
|
||||
# walk-forward validation on the test data
|
||||
predictions = list()
|
||||
for i in range(len(test_scaled)):
|
||||
# make one-step forecast
|
||||
X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
|
||||
yhat = forecast_lstm(lstm_model, 1, X)
|
||||
# invert scaling
|
||||
yhat = invert_scale(scaler, X, yhat)
|
||||
# invert differencing
|
||||
yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
|
||||
# store forecast
|
||||
predictions.append(yhat)
|
||||
expected = raw_values[len(train) + i + 1]
|
||||
print('Month=%d, Predicted=%f, Expected=%f' % (i + 1, yhat, expected))
|
||||
|
||||
# report performance
|
||||
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
|
||||
print('Test RMSE: %.3f' % rmse)
|
Loading…
Reference in New Issue
Block a user