From c2a1e9156ee8550b42322a66eadb3af1e117c370 Mon Sep 17 00:00:00 2001 From: Newnius Date: Sat, 2 May 2020 17:29:33 +0800 Subject: [PATCH] update --- .idea/workspace.xml | 2 +- serve.py | 15 +++++++++------ 2 files changed, 10 insertions(+), 7 deletions(-) diff --git a/.idea/workspace.xml b/.idea/workspace.xml index a641886..a015171 100644 --- a/.idea/workspace.xml +++ b/.idea/workspace.xml @@ -248,7 +248,7 @@ - + diff --git a/serve.py b/serve.py index d0bfb3e..b4e9d4f 100644 --- a/serve.py +++ b/serve.py @@ -137,19 +137,19 @@ def predict(job, seq): } df = pd.read_csv('./data/' + job + '.csv', usecols=['seq', 'value']) - df = df.tail(models[job]['batch_size'] * 2 - 1) + df = df.tail(int(models[job]['batch_size']) * 2 - 1) df = df.append(data, ignore_index=True) + batch_size = int(models[job]['batch_size']) + # transform data to be stationary raw_values = df.values - diff_values = difference(raw_values, 1)[models[job]['batch_size']:] + diff_values = difference(raw_values, 1)[batch_size:] # transform data to be supervised learning lag = 4 supervised = timeseries_to_supervised(diff_values, lag) supervised_values = supervised.values - batch_size = models[job]['batch_size'] - test = supervised_values test = test.reshape(test.shape[0], test.shape[1]) @@ -192,9 +192,12 @@ class MyHandler(BaseHTTPRequestHandler): try: job = query.get('job')[0] seq = query.get('seq')[0] - - predict(job, int(seq)) msg = {'code': 0, 'error': ""} + + pred, success = predict(job, int(seq)) + + if not success: + msg = {'code': 2, 'error': "Job " + job + " not exist"} except Exception as e: msg = {'code': 1, 'error': str(e)}