mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-12-15 09:06:43 +00:00
update
This commit is contained in:
91
train.py
91
train.py
@@ -9,7 +9,6 @@ from keras.layers import Dense
|
||||
from keras.layers import LSTM
|
||||
from math import sqrt
|
||||
import numpy
|
||||
from keras.optimizers import Adam
|
||||
|
||||
|
||||
# frame a sequence as a supervised learning problem
|
||||
@@ -75,21 +74,14 @@ def fit_lstm(train, batch_size2, nb_epoch, neurons):
|
||||
return model
|
||||
|
||||
|
||||
# make a one-step forecast
|
||||
def forecast_lstm(model, batch_size, X):
|
||||
X = X.reshape(1, 1, len(X))
|
||||
yhat = model.predict(X, batch_size=batch_size)
|
||||
return yhat[0, 0]
|
||||
|
||||
|
||||
# run a repeated experiment
|
||||
def experiment(repeats, series, seed):
|
||||
# run a experiment
|
||||
def experiment(series):
|
||||
# transform data to be stationary
|
||||
raw_values = series.values
|
||||
diff_values = difference(raw_values, 1)
|
||||
# transform data to be supervised learning
|
||||
lag2 = 4
|
||||
supervised = timeseries_to_supervised(diff_values, lag2)
|
||||
lag = 4
|
||||
supervised = timeseries_to_supervised(diff_values, lag)
|
||||
supervised_values = supervised.values
|
||||
|
||||
batch_size = 32
|
||||
@@ -102,59 +94,40 @@ def experiment(repeats, series, seed):
|
||||
# split data into train and test-sets
|
||||
train, test = supervised_values[0:-test_data_num], supervised_values[-test_data_num:]
|
||||
# transform the scale of the data
|
||||
print(test)
|
||||
|
||||
scaler, train_scaled, test_scaled = scale(train, test)
|
||||
print(test_scaled)
|
||||
|
||||
# run experiment
|
||||
error_scores = list()
|
||||
for r in range(repeats):
|
||||
# fit the model
|
||||
t1 = train.shape[0] % batch_size
|
||||
t2 = test.shape[0] % batch_size
|
||||
# fit the model
|
||||
t1 = train.shape[0] % batch_size
|
||||
t2 = test.shape[0] % batch_size
|
||||
|
||||
train_trimmed = train_scaled[t1:, :]
|
||||
lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
print(train_trimmed)
|
||||
print(train_trimmed[:, 0])
|
||||
print(train_trimmed[:, :-1])
|
||||
# if seed:
|
||||
# train_reshaped = train_trimmed[:, :-1].reshape(len(train_trimmed), 1, lag2)
|
||||
# lstm_model.predict(train_reshaped, batch_size=batch_size)
|
||||
# forecast test dataset
|
||||
test_reshaped = test_scaled[:, 0:-1]
|
||||
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag2)
|
||||
output = lstm_model.predict(test_reshaped, batch_size=batch_size)
|
||||
predictions = list()
|
||||
for i in range(len(output)):
|
||||
yhat = output[i, 0]
|
||||
X = test_scaled[i, 0:-1]
|
||||
# invert scaling
|
||||
yhat = invert_scale(scaler, X, yhat)
|
||||
# invert differencing
|
||||
yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
|
||||
# store forecast
|
||||
predictions.append(yhat)
|
||||
# report performance
|
||||
rmse = sqrt(mean_squared_error(raw_values[-test_data_num:], predictions))
|
||||
print(predictions, raw_values[-test_data_num:])
|
||||
print('%d) Test RMSE: %.3f' % (r + 1, rmse))
|
||||
error_scores.append(rmse)
|
||||
train_trimmed = train_scaled[t1:, :]
|
||||
lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
||||
|
||||
# forecast the entire training dataset to build up state for forecasting
|
||||
test_reshaped = test_scaled[:, 0:-1]
|
||||
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag)
|
||||
output = lstm_model.predict(test_reshaped, batch_size=batch_size)
|
||||
predictions = list()
|
||||
for i in range(len(output)):
|
||||
yhat = output[i, 0]
|
||||
X = test_scaled[i, 0:-1]
|
||||
# invert scaling
|
||||
yhat = invert_scale(scaler, X, yhat)
|
||||
# invert differencing
|
||||
yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
|
||||
# store forecast
|
||||
predictions.append(yhat)
|
||||
# report performance
|
||||
rmse = sqrt(mean_squared_error(raw_values[-test_data_num:], predictions))
|
||||
print(predictions, raw_values[-test_data_num:])
|
||||
error_scores.append(rmse)
|
||||
return error_scores
|
||||
|
||||
|
||||
# load dataset
|
||||
series = read_csv('data.csv', header=0, index_col=0, squeeze=True)
|
||||
# experiment
|
||||
repeats = 1
|
||||
results = DataFrame()
|
||||
# with seeding
|
||||
with_seed = experiment(repeats, series, True)
|
||||
results['with-seed'] = with_seed
|
||||
# without seeding
|
||||
# without_seed = experiment(repeats, series, False)
|
||||
# results['without-seed'] = without_seed
|
||||
# summarize results
|
||||
print(results.describe())
|
||||
# save boxplot
|
||||
# results.boxplot()
|
||||
|
||||
with_seed = experiment(series)
|
||||
|
||||
Reference in New Issue
Block a user