1
0
mirror of https://github.com/newnius/YAO-optimizer.git synced 2025-06-06 06:41:55 +00:00
This commit is contained in:
Newnius 2020-05-02 16:31:23 +08:00
parent 5a71f23db5
commit ee930aa2c5
3 changed files with 72 additions and 83 deletions

View File

@ -2,6 +2,8 @@
<project version="4"> <project version="4">
<component name="ChangeListManager"> <component name="ChangeListManager">
<list default="true" id="0aedafd8-e57e-462a-beda-65af0b91f3df" name="Default Changelist" comment=""> <list default="true" id="0aedafd8-e57e-462a-beda-65af0b91f3df" name="Default Changelist" comment="">
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/serve.py" beforeDir="false" afterPath="$PROJECT_DIR$/serve.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/train.py" beforeDir="false" afterPath="$PROJECT_DIR$/train.py" afterDir="false" /> <change beforePath="$PROJECT_DIR$/train.py" beforeDir="false" afterPath="$PROJECT_DIR$/train.py" afterDir="false" />
</list> </list>
<ignored path="$PROJECT_DIR$/out/" /> <ignored path="$PROJECT_DIR$/out/" />
@ -50,7 +52,7 @@
<entry key="csv" value="9" /> <entry key="csv" value="9" />
<entry key="gitignore" value="12" /> <entry key="gitignore" value="12" />
<entry key="md" value="104" /> <entry key="md" value="104" />
<entry key="py" value="2985" /> <entry key="py" value="3029" />
<entry key="sh" value="5" /> <entry key="sh" value="5" />
</counts> </counts>
</usages-collector> </usages-collector>
@ -60,7 +62,7 @@
<entry key="Dockerfile" value="81" /> <entry key="Dockerfile" value="81" />
<entry key="Markdown" value="104" /> <entry key="Markdown" value="104" />
<entry key="PLAIN_TEXT" value="21" /> <entry key="PLAIN_TEXT" value="21" />
<entry key="Python" value="2985" /> <entry key="Python" value="3029" />
</counts> </counts>
</usages-collector> </usages-collector>
</session> </session>
@ -91,11 +93,11 @@
<file pinned="false" current-in-tab="false"> <file pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/serve.py"> <entry file="file://$PROJECT_DIR$/serve.py">
<provider selected="true" editor-type-id="text-editor"> <provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="-1056"> <state relative-caret-position="-625">
<caret line="43" column="16" lean-forward="true" selection-start-line="43" selection-start-column="16" selection-end-line="43" selection-end-column="16" /> <caret line="25" lean-forward="true" selection-start-line="25" selection-end-line="25" />
<folding> <folding>
<element signature="e#18#46#0" expanded="true" /> <element signature="e#18#46#0" expanded="true" />
<marker date="1588357497851" expanded="true" signature="5576:5578" ph="..." /> <marker date="1588408252097" expanded="true" signature="5911:5913" ph="..." />
</folding> </folding>
</state> </state>
</provider> </provider>
@ -104,8 +106,8 @@
<file pinned="false" current-in-tab="true"> <file pinned="false" current-in-tab="true">
<entry file="file://$PROJECT_DIR$/train.py"> <entry file="file://$PROJECT_DIR$/train.py">
<provider selected="true" editor-type-id="text-editor"> <provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="213"> <state relative-caret-position="-283">
<caret line="97" column="30" selection-start-line="97" selection-start-column="30" selection-end-line="97" selection-end-column="30" /> <caret line="58" lean-forward="true" selection-start-line="58" selection-end-line="58" />
<folding> <folding>
<element signature="e#0#28#0" expanded="true" /> <element signature="e#0#28#0" expanded="true" />
</folding> </folding>
@ -180,6 +182,8 @@
<find>timeseries_to_supervised</find> <find>timeseries_to_supervised</find>
<find>batch_index</find> <find>batch_index</find>
<find>12</find> <find>12</find>
<find>32</find>
<find>forecast_lstm</find>
</findStrings> </findStrings>
</component> </component>
<component name="Git.Settings"> <component name="Git.Settings">
@ -195,11 +199,11 @@
<option value="$PROJECT_DIR$/README.md" /> <option value="$PROJECT_DIR$/README.md" />
<option value="$PROJECT_DIR$/model_tensorflow.py" /> <option value="$PROJECT_DIR$/model_tensorflow.py" />
<option value="$PROJECT_DIR$/Dockerfile" /> <option value="$PROJECT_DIR$/Dockerfile" />
<option value="$PROJECT_DIR$/serve.py" />
<option value="$PROJECT_DIR$/main.py" /> <option value="$PROJECT_DIR$/main.py" />
<option value="$PROJECT_DIR$/.gitignore" /> <option value="$PROJECT_DIR$/.gitignore" />
<option value="$PROJECT_DIR$/data/data2.csv" /> <option value="$PROJECT_DIR$/data/data2.csv" />
<option value="$PROJECT_DIR$/data/data3.csv" /> <option value="$PROJECT_DIR$/data/data3.csv" />
<option value="$PROJECT_DIR$/serve.py" />
<option value="$PROJECT_DIR$/train.py" /> <option value="$PROJECT_DIR$/train.py" />
</list> </list>
</option> </option>
@ -243,7 +247,7 @@
<component name="PropertiesComponent"> <component name="PropertiesComponent">
<property name="WebServerToolWindowFactoryState" value="false" /> <property name="WebServerToolWindowFactoryState" value="false" />
<property name="aspect.path.notification.shown" value="true" /> <property name="aspect.path.notification.shown" value="true" />
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588407831519" /> <property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588407897977" />
<property name="go.gopath.indexing.explicitly.defined" value="true" /> <property name="go.gopath.indexing.explicitly.defined" value="true" />
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" /> <property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
<property name="nodejs_npm_path_reset_for_default_project" value="true" /> <property name="nodejs_npm_path_reset_for_default_project" value="true" />
@ -284,15 +288,16 @@
<option name="presentableId" value="Default" /> <option name="presentableId" value="Default" />
<updated>1588152877746</updated> <updated>1588152877746</updated>
<workItem from="1588152880522" duration="16973000" /> <workItem from="1588152880522" duration="16973000" />
<workItem from="1588319878551" duration="30600000" /> <workItem from="1588319878551" duration="31191000" />
</task> </task>
<servers /> <servers />
</component> </component>
<component name="TimeTrackingManager"> <component name="TimeTrackingManager">
<option name="totallyTimeSpent" value="47573000" /> <option name="totallyTimeSpent" value="48164000" />
</component> </component>
<component name="ToolWindowManager"> <component name="ToolWindowManager">
<frame x="0" y="0" width="1280" height="800" extended-state="0" /> <frame x="0" y="0" width="1280" height="800" extended-state="0" />
<editor active="true" />
<layout> <layout>
<window_info id="Designer" order="0" /> <window_info id="Designer" order="0" />
<window_info id="UI Designer" order="1" /> <window_info id="UI Designer" order="1" />
@ -412,17 +417,6 @@
</state> </state>
</provider> </provider>
</entry> </entry>
<entry file="file://$PROJECT_DIR$/serve.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="-1056">
<caret line="43" column="16" lean-forward="true" selection-start-line="43" selection-start-column="16" selection-end-line="43" selection-end-column="16" />
<folding>
<element signature="e#18#46#0" expanded="true" />
<marker date="1588357497851" expanded="true" signature="5576:5578" ph="..." />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/main.py"> <entry file="file://$PROJECT_DIR$/main.py">
<provider selected="true" editor-type-id="text-editor"> <provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="302"> <state relative-caret-position="302">
@ -433,10 +427,21 @@
</state> </state>
</provider> </provider>
</entry> </entry>
<entry file="file://$PROJECT_DIR$/serve.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="-625">
<caret line="25" lean-forward="true" selection-start-line="25" selection-end-line="25" />
<folding>
<element signature="e#18#46#0" expanded="true" />
<marker date="1588408252097" expanded="true" signature="5911:5913" ph="..." />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/train.py"> <entry file="file://$PROJECT_DIR$/train.py">
<provider selected="true" editor-type-id="text-editor"> <provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="213"> <state relative-caret-position="-283">
<caret line="97" column="30" selection-start-line="97" selection-start-column="30" selection-end-line="97" selection-end-column="30" /> <caret line="58" lean-forward="true" selection-start-line="58" selection-end-line="58" />
<folding> <folding>
<element signature="e#0#28#0" expanded="true" /> <element signature="e#0#28#0" expanded="true" />
</folding> </folding>

View File

@ -11,6 +11,17 @@ import os
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from model_tensorflow import train, predict from model_tensorflow import train, predict
import csv import csv
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
import numpy
class Config: class Config:

View File

@ -9,7 +9,6 @@ from keras.layers import Dense
from keras.layers import LSTM from keras.layers import LSTM
from math import sqrt from math import sqrt
import numpy import numpy
from keras.optimizers import Adam
# frame a sequence as a supervised learning problem # frame a sequence as a supervised learning problem
@ -75,21 +74,14 @@ def fit_lstm(train, batch_size2, nb_epoch, neurons):
return model return model
# make a one-step forecast # run a experiment
def forecast_lstm(model, batch_size, X): def experiment(series):
X = X.reshape(1, 1, len(X))
yhat = model.predict(X, batch_size=batch_size)
return yhat[0, 0]
# run a repeated experiment
def experiment(repeats, series, seed):
# transform data to be stationary # transform data to be stationary
raw_values = series.values raw_values = series.values
diff_values = difference(raw_values, 1) diff_values = difference(raw_values, 1)
# transform data to be supervised learning # transform data to be supervised learning
lag2 = 4 lag = 4
supervised = timeseries_to_supervised(diff_values, lag2) supervised = timeseries_to_supervised(diff_values, lag)
supervised_values = supervised.values supervised_values = supervised.values
batch_size = 32 batch_size = 32
@ -102,59 +94,40 @@ def experiment(repeats, series, seed):
# split data into train and test-sets # split data into train and test-sets
train, test = supervised_values[0:-test_data_num], supervised_values[-test_data_num:] train, test = supervised_values[0:-test_data_num], supervised_values[-test_data_num:]
# transform the scale of the data # transform the scale of the data
print(test)
scaler, train_scaled, test_scaled = scale(train, test) scaler, train_scaled, test_scaled = scale(train, test)
print(test_scaled)
# run experiment # run experiment
error_scores = list() error_scores = list()
for r in range(repeats): # fit the model
# fit the model t1 = train.shape[0] % batch_size
t1 = train.shape[0] % batch_size t2 = test.shape[0] % batch_size
t2 = test.shape[0] % batch_size
train_trimmed = train_scaled[t1:, :] train_trimmed = train_scaled[t1:, :]
lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4) lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4)
# forecast the entire training dataset to build up state for forecasting
print(train_trimmed) # forecast the entire training dataset to build up state for forecasting
print(train_trimmed[:, 0]) test_reshaped = test_scaled[:, 0:-1]
print(train_trimmed[:, :-1]) test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag)
# if seed: output = lstm_model.predict(test_reshaped, batch_size=batch_size)
# train_reshaped = train_trimmed[:, :-1].reshape(len(train_trimmed), 1, lag2) predictions = list()
# lstm_model.predict(train_reshaped, batch_size=batch_size) for i in range(len(output)):
# forecast test dataset yhat = output[i, 0]
test_reshaped = test_scaled[:, 0:-1] X = test_scaled[i, 0:-1]
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag2) # invert scaling
output = lstm_model.predict(test_reshaped, batch_size=batch_size) yhat = invert_scale(scaler, X, yhat)
predictions = list() # invert differencing
for i in range(len(output)): yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
yhat = output[i, 0] # store forecast
X = test_scaled[i, 0:-1] predictions.append(yhat)
# invert scaling # report performance
yhat = invert_scale(scaler, X, yhat) rmse = sqrt(mean_squared_error(raw_values[-test_data_num:], predictions))
# invert differencing print(predictions, raw_values[-test_data_num:])
yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i) error_scores.append(rmse)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-test_data_num:], predictions))
print(predictions, raw_values[-test_data_num:])
print('%d) Test RMSE: %.3f' % (r + 1, rmse))
error_scores.append(rmse)
return error_scores return error_scores
# load dataset # load dataset
series = read_csv('data.csv', header=0, index_col=0, squeeze=True) series = read_csv('data.csv', header=0, index_col=0, squeeze=True)
# experiment
repeats = 1 with_seed = experiment(series)
results = DataFrame()
# with seeding
with_seed = experiment(repeats, series, True)
results['with-seed'] = with_seed
# without seeding
# without_seed = experiment(repeats, series, False)
# results['without-seed'] = without_seed
# summarize results
print(results.describe())
# save boxplot
# results.boxplot()