from pandas import DataFrame from pandas import Series from pandas import concat from pandas import read_csv from pandas import datetime from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from math import sqrt import numpy # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag + 1)] columns.append(df) df = concat(columns, axis=1) df.fillna(0, inplace=True) return df # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) return scaler, train_scaled, test_scaled # inverse scaling for a forecasted value def invert_scale(scaler, X, value): new_row = [x for x in X] + [value] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # fit an LSTM network to training data def fit_lstm(train, batch_size, nb_epoch, neurons): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = Sequential() model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') for i in range(nb_epoch): print("Epoch {}/{}".format(i, nb_epoch)) model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False) model.reset_states() return model # make a one-step forecast def forecast_lstm(model, batch_size, X): X = X.reshape(X.shape[0], X.shape[1], len(X)) yhat = model.predict(X, batch_size=batch_size) return yhat[0, 0] batch_size = 12 # load dataset series = read_csv('data.csv', header=0, index_col=0, squeeze=True) # transform data to be stationary raw_values = series.values diff_values = difference(raw_values, 1) # transform data to be supervised learning supervised = timeseries_to_supervised(diff_values, 1) supervised_values = supervised.values # split data into train and test-sets train, test = supervised_values[0:-12], supervised_values[-12:] # transform the scale of the data scaler, train_scaled, test_scaled = scale(train, test) # fit the model lstm_model = fit_lstm(train_scaled, batch_size, 30, 4) # forecast the entire training dataset to build up state for forecasting train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1) lstm_model.predict(train_reshaped, batch_size=batch_size) # walk-forward validation on the test data predictions = list() for j in range(len(test_scaled)): # make one-step forecast #X, y = test_scaled[j, 0:-1], test_scaled[j, -1] yhat = forecast_lstm(lstm_model, batch_size, test_scaled) # invert scaling yhat = invert_scale(scaler, test_scaled, yhat) # invert differencing yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - j) # store forecast predictions.append(yhat) expected = raw_values[len(train) + j + 1] print('Month=%d, Predicted=%f, Expected=%f' % (j + 1, yhat, expected)) # report performance rmse = sqrt(mean_squared_error(raw_values[-12:], predictions)) print('Test RMSE: %.3f' % rmse)