from pandas import DataFrame from pandas import Series from pandas import concat from pandas import read_csv from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from math import sqrt import numpy from keras.optimizers import Adam # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag + 1)] columns.append(df) df = concat(columns, axis=1) df = df.drop(0) return df # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) return scaler, train_scaled, test_scaled # inverse scaling for a forecasted value def invert_scale(scaler, X, yhat): new_row = [x for x in X] + [yhat] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # fit an LSTM network to training data def fit_lstm(train, batch_size2, nb_epoch, neurons): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = Sequential() model.add(LSTM(neurons, batch_input_shape=(batch_size2, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=batch_size2, verbose=0, shuffle=False) loss = model.evaluate(X, y) print("Epoch {}/{}, loss = {}".format(i, nb_epoch, loss)) model.reset_states() return model # make a one-step forecast def forecast_lstm(model, batch_size, X): X = X.reshape(1, 1, len(X)) yhat = model.predict(X, batch_size=batch_size) return yhat[0, 0] # run a repeated experiment def experiment(repeats, series, seed): # transform data to be stationary raw_values = series.values diff_values = difference(raw_values, 1) # transform data to be supervised learning lag2 = 4 supervised = timeseries_to_supervised(diff_values, lag2) supervised_values = supervised.values batch_size = 32 if supervised_values.shape[0] < 100: batch_size = 16 test_data_num = batch_size # split data into train and test-sets train, test = supervised_values[0:-test_data_num], supervised_values[-test_data_num:] # transform the scale of the data print(test) scaler, train_scaled, test_scaled = scale(train, test) print(test_scaled) # run experiment error_scores = list() for r in range(repeats): # fit the model t1 = train.shape[0] % batch_size t2 = test.shape[0] % batch_size train_trimmed = train_scaled[t1:, :] lstm_model = fit_lstm(train_trimmed, batch_size, 30, 4) # forecast the entire training dataset to build up state for forecasting print(train_trimmed) print(train_trimmed[:, 0]) print(train_trimmed[:, :-1]) # if seed: # train_reshaped = train_trimmed[:, :-1].reshape(len(train_trimmed), 1, lag2) # lstm_model.predict(train_reshaped, batch_size=batch_size) # forecast test dataset test_reshaped = test_scaled[:, 0:-1] test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag2) output = lstm_model.predict(test_reshaped, batch_size=batch_size) predictions = list() for i in range(len(output)): yhat = output[i, 0] X = test_scaled[i, 0:-1] # invert scaling yhat = invert_scale(scaler, X, yhat) # invert differencing yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i) # store forecast predictions.append(yhat) # report performance rmse = sqrt(mean_squared_error(raw_values[-test_data_num:], predictions)) print(predictions, raw_values[-test_data_num:]) print('%d) Test RMSE: %.3f' % (r + 1, rmse)) error_scores.append(rmse) return error_scores # load dataset series = read_csv('data.csv', header=0, index_col=0, squeeze=True) # experiment repeats = 1 results = DataFrame() # with seeding with_seed = experiment(repeats, series, True) results['with-seed'] = with_seed # without seeding without_seed = experiment(repeats, series, False) results['without-seed'] = without_seed # summarize results print(results.describe()) # save boxplot results.boxplot()