mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-06 22:51:55 +00:00
302 lines
8.2 KiB
Python
302 lines
8.2 KiB
Python
#!/usr/bin/python
|
|
from threading import Thread
|
|
from threading import Lock
|
|
from http.server import BaseHTTPRequestHandler, HTTPServer
|
|
import cgi
|
|
import json
|
|
from urllib import parse
|
|
import pandas as pd
|
|
import csv
|
|
from pandas import DataFrame
|
|
from pandas import Series
|
|
from pandas import concat
|
|
from pandas import read_csv
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense
|
|
from keras.layers import LSTM
|
|
from math import sqrt
|
|
import numpy
|
|
|
|
PORT_NUMBER = 8080
|
|
lock = Lock()
|
|
models = {}
|
|
|
|
|
|
# frame a sequence as a supervised learning problem
|
|
def timeseries_to_supervised(data, lag=1):
|
|
df = DataFrame(data)
|
|
columns = [df.shift(i) for i in range(1, lag + 1)]
|
|
columns.append(df)
|
|
df = concat(columns, axis=1)
|
|
df = df.drop(0)
|
|
return df
|
|
|
|
|
|
# create a differenced series
|
|
def difference(dataset, interval=1):
|
|
diff = list()
|
|
for i in range(interval, len(dataset)):
|
|
value = dataset[i] - dataset[i - interval]
|
|
diff.append(value)
|
|
return Series(diff)
|
|
|
|
|
|
# invert differenced value
|
|
def inverse_difference(history, yhat, interval=1):
|
|
return yhat + history[-interval]
|
|
|
|
|
|
# inverse scaling for a forecasted value
|
|
def invert_scale(scaler, X, yhat):
|
|
new_row = [x for x in X] + [yhat]
|
|
array = numpy.array(new_row)
|
|
array = array.reshape(1, len(array))
|
|
inverted = scaler.inverse_transform(array)
|
|
return inverted[0, -1]
|
|
|
|
|
|
# fit an LSTM network to training data
|
|
def fit_lstm(train, batch_size2, nb_epoch, neurons):
|
|
X, y = train[:, 0:-1], train[:, -1]
|
|
X = X.reshape(X.shape[0], 1, X.shape[1])
|
|
model = Sequential()
|
|
model.add(LSTM(neurons, batch_input_shape=(batch_size2, X.shape[1], X.shape[2]), stateful=True))
|
|
model.add(Dense(1))
|
|
model.compile(loss='mean_squared_error', optimizer='adam')
|
|
for i in range(nb_epoch):
|
|
model.fit(X, y, epochs=1, batch_size=batch_size2, verbose=0, shuffle=False)
|
|
# loss = model.evaluate(X, y)
|
|
# print("Epoch {}/{}, loss = {}".format(i, nb_epoch, loss))
|
|
print("Epoch {}/{}".format(i, nb_epoch))
|
|
model.reset_states()
|
|
return model
|
|
|
|
|
|
def train_models(job):
|
|
lock.acquire()
|
|
if job not in models:
|
|
models[job] = {
|
|
'lock': Lock()
|
|
}
|
|
lock.release()
|
|
|
|
models[job]['lock'].acquire()
|
|
|
|
# load dataset
|
|
series = read_csv('./data/' + job + '.csv', header=0, index_col=0, squeeze=True)
|
|
|
|
# transform data to be stationary
|
|
raw_values = series.values
|
|
diff_values = difference(raw_values, 1)
|
|
# transform data to be supervised learning
|
|
lag = 4
|
|
supervised = timeseries_to_supervised(diff_values, lag)
|
|
print(supervised)
|
|
print(type(supervised))
|
|
print(supervised.shape)
|
|
supervised_values = supervised.values
|
|
print(supervised_values)
|
|
|
|
batch_size = 32
|
|
if supervised_values.shape[0] < 100:
|
|
batch_size = 16
|
|
if supervised_values.shape[0] < 60:
|
|
batch_size = 8
|
|
|
|
# split data into train and test-sets
|
|
train = supervised_values
|
|
# transform the scale of the data
|
|
|
|
# scale data to [-1, 1]
|
|
# fit scaler
|
|
scaler = MinMaxScaler(feature_range=(-1, 1))
|
|
scaler = scaler.fit(train)
|
|
# transform train
|
|
train = train.reshape(train.shape[0], train.shape[1])
|
|
train_scaled = scaler.transform(train)
|
|
|
|
# fit the model
|
|
t1 = train.shape[0] % batch_size
|
|
|
|
train_trimmed = train_scaled[t1:, :]
|
|
model = fit_lstm(train_trimmed, batch_size, 30, 4)
|
|
|
|
models[job]['model'] = model
|
|
models[job]['scaler'] = scaler
|
|
models[job]['batch_size'] = batch_size
|
|
|
|
models[job]['lock'].release()
|
|
|
|
|
|
def predict(job, seq):
|
|
if job not in models or 'model' not in models[job]:
|
|
return -1, False
|
|
|
|
# load dataset
|
|
|
|
batch_size = int(models[job]['batch_size'])
|
|
|
|
df = read_csv('./data/' + job + '.csv', header=0, index_col=0, squeeze=True)
|
|
df = df.tail(batch_size * 2 - 1)
|
|
df.loc[df.shape[0]] = [seq, 0]
|
|
|
|
# transform data to be stationary
|
|
raw_values = df.values
|
|
print(raw_values)
|
|
diff_values = difference(raw_values, 1)
|
|
print(diff_values)
|
|
|
|
# transform data to be supervised learning
|
|
lag = 4
|
|
supervised = timeseries_to_supervised(diff_values, lag)
|
|
print(type(supervised))
|
|
print(supervised)
|
|
supervised_values = supervised[batch_size:]
|
|
print(type(supervised_values))
|
|
print(supervised_values)
|
|
print(supervised_values.shape)
|
|
test = supervised_values.values
|
|
print(test)
|
|
|
|
test = test.reshape(test.shape[0], test.shape[1])
|
|
test_scaled = models[job]['scaler'].transform(test)
|
|
|
|
# forecast the entire training dataset to build up state for forecasting
|
|
test_reshaped = test_scaled[:, 0:-1]
|
|
test_reshaped = test_reshaped.reshape(len(test_reshaped), 1, lag)
|
|
output = models[job]['model'].predict(test_reshaped, batch_size=batch_size)
|
|
predictions = list()
|
|
for i in range(len(output)):
|
|
yhat = output[i, 0]
|
|
X = test_scaled[i, 0:-1]
|
|
# invert scaling
|
|
yhat = invert_scale(models[job]['scaler'], X, yhat)
|
|
# invert differencing
|
|
yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i)
|
|
# store forecast
|
|
predictions.append(yhat)
|
|
# report performance
|
|
|
|
rmse = sqrt(mean_squared_error(raw_values[-batch_size:], predictions))
|
|
print(predictions, raw_values[-batch_size:])
|
|
return 1, True
|
|
|
|
|
|
class MyHandler(BaseHTTPRequestHandler):
|
|
# Handler for the GET requests
|
|
def do_GET(self):
|
|
req = parse.urlparse(self.path)
|
|
query = parse.parse_qs(req.query)
|
|
|
|
if req.path == "/ping":
|
|
self.send_response(200)
|
|
self.send_header('Content-type', 'application/json')
|
|
self.end_headers()
|
|
self.wfile.write(bytes("pong", "utf-8"))
|
|
|
|
elif req.path == "/predict":
|
|
try:
|
|
job = query.get('job')[0]
|
|
seq = query.get('seq')[0]
|
|
msg = {'code': 0, 'error': ""}
|
|
|
|
pred, success = predict(job, int(seq))
|
|
|
|
if not success:
|
|
msg = {'code': 2, 'error': "Job " + job + " not exist"}
|
|
except Exception as e:
|
|
msg = {'code': 1, 'error': str(e)}
|
|
|
|
self.send_response(200)
|
|
self.send_header('Content-type', 'application/json')
|
|
self.end_headers()
|
|
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
|
|
|
|
elif req.path == "/feed":
|
|
try:
|
|
job = query.get('job')[0]
|
|
seq = query.get('seq')[0]
|
|
value = query.get('value')[0]
|
|
|
|
if int(seq) == 1:
|
|
with open('./data/' + job + '.csv', 'w', newline='') as csvfile:
|
|
spamwriter = csv.writer(
|
|
csvfile, delimiter=',',
|
|
quotechar='|', quoting=csv.QUOTE_MINIMAL
|
|
)
|
|
spamwriter.writerow(["seq", "value"])
|
|
|
|
with open('./data/' + job + '.csv', 'a+', newline='') as csvfile:
|
|
spamwriter = csv.writer(
|
|
csvfile, delimiter=',',
|
|
quotechar='|', quoting=csv.QUOTE_MINIMAL
|
|
)
|
|
spamwriter.writerow([seq, value])
|
|
msg = {'code': 0, 'error': ""}
|
|
except Exception as e:
|
|
msg = {'code': 1, 'error': str(e)}
|
|
self.send_response(200)
|
|
self.send_header('Content-type', 'application/json')
|
|
self.end_headers()
|
|
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
|
|
|
|
elif req.path == "/train":
|
|
try:
|
|
job = query.get('job')[0]
|
|
t = Thread(target=train_models, name='train_models', args=(job,))
|
|
t.start()
|
|
msg = {'code': 0, 'error': ""}
|
|
except Exception as e:
|
|
msg = {'code': 1, 'error': str(e)}
|
|
self.send_response(200)
|
|
self.send_header('Content-type', 'application/json')
|
|
self.end_headers()
|
|
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
|
|
|
|
else:
|
|
self.send_error(404, 'File Not Found: %s' % self.path)
|
|
|
|
# Handler for the POST requests
|
|
def do_POST(self):
|
|
if self.path == "/train2":
|
|
form = cgi.FieldStorage(
|
|
fp=self.rfile,
|
|
headers=self.headers,
|
|
environ={
|
|
'REQUEST_METHOD': 'POST',
|
|
'CONTENT_TYPE': self.headers['Content-Type'],
|
|
})
|
|
try:
|
|
job = form.getvalue('job')[0]
|
|
seq = form.getvalue('seq')[0]
|
|
t = Thread(target=train_models(), name='train_models', args=(job, seq,))
|
|
t.start()
|
|
msg = {"code": 0, "error": ""}
|
|
except Exception as e:
|
|
msg = {"code": 1, "error": str(e)}
|
|
self.send_response(200)
|
|
self.send_header('Content-type', 'application/json')
|
|
self.end_headers()
|
|
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
|
|
|
|
else:
|
|
self.send_error(404, 'File Not Found: %s' % self.path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
# Create a web server and define the handler to manage the
|
|
# incoming request
|
|
server = HTTPServer(('', PORT_NUMBER), MyHandler)
|
|
print('Started http server on port ', PORT_NUMBER)
|
|
|
|
# Wait forever for incoming http requests
|
|
server.serve_forever()
|
|
|
|
except KeyboardInterrupt:
|
|
print('^C received, shutting down the web server')
|
|
|
|
server.socket.close()
|