mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-06 06:41:55 +00:00
150 lines
4.9 KiB
Python
150 lines
4.9 KiB
Python
# _*_coding:utf-8_*_
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
def load_data(trainfile, testfile):
|
|
traindata = pd.read_csv(trainfile)
|
|
testdata = pd.read_csv(testfile)
|
|
feature_data = traindata.iloc[:, 1:-1]
|
|
label_data = traindata.iloc[:, -1]
|
|
test_feature = testdata.iloc[:, 1:]
|
|
return feature_data, label_data, test_feature
|
|
|
|
|
|
def random_forest_train(feature_data, label_data, test_feature, submitfile):
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(feature_data, label_data, test_size=0.01)
|
|
params = {
|
|
'n_estimators': 70,
|
|
'max_depth': 13,
|
|
'min_samples_split': 10,
|
|
'min_samples_leaf': 5, # 10
|
|
'max_features': 7
|
|
}
|
|
print(X_test)
|
|
model = RandomForestRegressor(**params)
|
|
model.fit(X_train, y_train)
|
|
# 对测试集进行预测
|
|
y_pred = model.predict(X_test)
|
|
# 计算准确率
|
|
MSE = mean_squared_error(y_test, y_pred)
|
|
RMSE = np.sqrt(MSE)
|
|
print(RMSE)
|
|
|
|
submit = pd.read_csv(submitfile)
|
|
print(submit)
|
|
print(model.predict(test_feature))
|
|
submit['CPU'] = model.predict(test_feature)
|
|
submit.to_csv('my_random_forest_prediction1.csv', index=False)
|
|
print(submit)
|
|
|
|
|
|
def random_forest_parameter_tuning1(feature_data, label_data, test_feature):
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(feature_data, label_data, test_size=0.23)
|
|
param_test1 = {
|
|
'n_estimators': range(10, 71, 10)
|
|
}
|
|
model = GridSearchCV(estimator=RandomForestRegressor(
|
|
min_samples_split=100, min_samples_leaf=20, max_depth=8, max_features='sqrt',
|
|
random_state=10), param_grid=param_test1, cv=5
|
|
)
|
|
model.fit(X_train, y_train)
|
|
# 对测试集进行预测
|
|
y_pred = model.predict(X_test)
|
|
# 计算准确率
|
|
MSE = mean_squared_error(y_test, y_pred)
|
|
RMSE = np.sqrt(MSE)
|
|
print(RMSE)
|
|
return model.best_score_, model.best_params_
|
|
|
|
|
|
def random_forest_parameter_tuning2(feature_data, label_data, test_feature):
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(feature_data, label_data, test_size=0.23)
|
|
param_test2 = {
|
|
'max_depth': range(3, 14, 2),
|
|
'min_samples_split': range(50, 201, 20)
|
|
}
|
|
model = GridSearchCV(estimator=RandomForestRegressor(
|
|
n_estimators=70, min_samples_leaf=20, max_features='sqrt', oob_score=True,
|
|
random_state=10), param_grid=param_test2, cv=5
|
|
)
|
|
model.fit(X_train, y_train)
|
|
# 对测试集进行预测
|
|
y_pred = model.predict(X_test)
|
|
# 计算准确率
|
|
MSE = mean_squared_error(y_test, y_pred)
|
|
RMSE = np.sqrt(MSE)
|
|
print(RMSE)
|
|
return model.best_score_, model.best_params_
|
|
|
|
|
|
def random_forest_parameter_tuning3(feature_data, label_data, test_feature):
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(feature_data, label_data, test_size=0.23)
|
|
param_test3 = {
|
|
'min_samples_split': range(10, 90, 20),
|
|
'min_samples_leaf': range(10, 60, 10),
|
|
}
|
|
model = GridSearchCV(estimator=RandomForestRegressor(
|
|
n_estimators=70, max_depth=13, max_features='sqrt', oob_score=True,
|
|
random_state=10), param_grid=param_test3, cv=5
|
|
)
|
|
model.fit(X_train, y_train)
|
|
# 对测试集进行预测
|
|
y_pred = model.predict(X_test)
|
|
# 计算准确率
|
|
MSE = mean_squared_error(y_test, y_pred)
|
|
RMSE = np.sqrt(MSE)
|
|
print(RMSE)
|
|
return model.best_score_, model.best_params_
|
|
|
|
|
|
def random_forest_parameter_tuning4(feature_data, label_data, test_feature):
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(feature_data, label_data, test_size=0.23)
|
|
param_test4 = {
|
|
'max_features': range(3, 9, 2)
|
|
}
|
|
model = GridSearchCV(estimator=RandomForestRegressor(
|
|
n_estimators=70, max_depth=13, min_samples_split=10, min_samples_leaf=10, oob_score=True,
|
|
random_state=10), param_grid=param_test4, cv=5
|
|
)
|
|
model.fit(X_train, y_train)
|
|
# 对测试集进行预测
|
|
y_pred = model.predict(X_test)
|
|
# 计算准确率
|
|
MSE = mean_squared_error(y_test, y_pred)
|
|
RMSE = np.sqrt(MSE)
|
|
print(RMSE)
|
|
return model.best_score_, model.best_params_
|
|
|
|
|
|
if __name__ == '__main__':
|
|
trainfile = 'data/train.csv'
|
|
testfile = 'data/test.csv'
|
|
submitfile = 'data/sample_submit.csv'
|
|
feature_data, label_data, test_feature = load_data(trainfile, testfile)
|
|
random_forest_train(feature_data, label_data, test_feature, submitfile)
|