1
0
mirror of https://github.com/newnius/YAO-scheduler.git synced 2025-06-08 23:01:55 +00:00
YAO-scheduler/src/ga.go

334 lines
7.6 KiB
Go
Raw Normal View History

2020-05-14 12:52:39 +00:00
package main
import (
"fmt"
"math/rand"
"github.com/MaxHalford/eaopt"
"time"
"strconv"
"math"
)
var nodesMap map[string]Node
var tasksMap map[string]Task
type Node struct {
ClientID string `json:"id"`
Domain int `json:"domain"`
Rack int `json:"rack"`
}
type Task struct {
Name string `json:"name"`
IsPS bool `json:"is_ps"`
}
// An valid allocation
type Allocation struct {
TasksOnNode map[string][]Task // tasks on nodes[id]
Nodes map[string]Node
Valid map[string]bool
}
// Evaluate a Vector with the Drop-Wave function which takes two variables as
// input and reaches a minimum of -1 in (0, 0). The function is simple so there
// isn't any error handling to do.
func (X Allocation) Evaluate() (float64, error) {
if !X.Valid["flag"] {
fmt.Println("Invalid allocation")
return math.MaxFloat64, nil
}
cost := 0
taskToNode := map[string]string{}
for id, tasks := range X.TasksOnNode {
for _, task := range tasks {
taskToNode[task.Name] = id
}
}
for taskI, nodeI := range taskToNode {
for taskJ, nodeJ := range taskToNode {
if taskI == taskJ {
continue
}
if tasksMap[taskI].IsPS == tasksMap[taskJ].IsPS {
continue
}
if X.Nodes[nodeI].Domain != X.Nodes[nodeJ].Domain {
cost += 4
} else if X.Nodes[nodeI].Rack != X.Nodes[nodeJ].Rack {
cost += 2
} else if nodeI != nodeJ {
cost += 1
} else {
cost += 0
}
}
}
//fmt.Println(taskToNode, cost/2, len(X.Nodes))
return float64(cost / 2), nil
}
// Mutate a Vector by resampling each element from a normal distribution with
// probability 0.8.
func (X Allocation) Mutate(rng *rand.Rand) {
if !X.Valid["flag"] {
fmt.Println("Invalid allocation")
return
}
//fmt.Println("Mutate")
fmt.Println("Before", X)
/* decrease node */
var nodeIDs []string
for nodeID := range X.Nodes {
nodeIDs = append(nodeIDs, nodeID)
}
randIndex := rng.Intn(len(X.Nodes))
nodeID := nodeIDs[randIndex]
/* reschedule tasks on tgt node */
var tasks []Task
if _, ok := X.TasksOnNode[nodeID]; ok {
for _, task := range X.TasksOnNode[nodeID] {
tasks = append(tasks, task)
}
delete(X.TasksOnNode, nodeID)
}
delete(X.Nodes, nodeID)
fmt.Println(tasks)
/* first-fit */
for _, task := range tasks {
flag := false
for nodeID3 := range X.Nodes {
if len(X.TasksOnNode[nodeID3]) < 3 {
X.TasksOnNode[nodeID3] = append(X.TasksOnNode[nodeID3], task)
flag = true
break
}
}
if !flag {
X.Valid["flag"] = false
}
}
fmt.Println("After", X)
/* exchange tasks */
//randIndexM := rng.Intn(len(X))
//randIndexN := rng.Intn(len(X))
//X[randIndexM].Tasks, X[randIndexN].Tasks = X[randIndexN].Tasks, X[randIndexM].Tasks
}
// Crossover a Vector with another Vector by applying uniform crossover.
func (X Allocation) Crossover(Y eaopt.Genome, rng *rand.Rand) {
//fmt.Println("Crossover")
if !Y.(Allocation).Valid["flag"] || !X.Valid["flag"] {
return
}
taskToNode := map[string]string{}
for nodeID, tasks := range X.TasksOnNode {
for _, task := range tasks {
taskToNode[task.Name] = nodeID
}
}
var nodeIDs []string
for nodeID := range Y.(Allocation).Nodes {
nodeIDs = append(nodeIDs, nodeID)
}
//fmt.Println(nodeIDs, Y.(Allocation))
randIndex := rng.Intn(len(nodeIDs))
nodeID := nodeIDs[randIndex]
for _, task := range Y.(Allocation).TasksOnNode[nodeID] {
//fmt.Println(Y.(Allocation).TasksOnNode[nodeID])
idx := -1
nodeID2, ok := taskToNode[task.Name]
if !ok {
fmt.Println("Error", taskToNode, X.TasksOnNode, task.Name)
}
for i, task2 := range X.TasksOnNode[nodeID2] {
if task2.Name == task.Name {
idx = i
}
}
if idx == -1 {
fmt.Println("Error 2", taskToNode, X.TasksOnNode, task.Name)
}
//fmt.Println(X.TasksOnNode)
copy(X.TasksOnNode[nodeID2][idx:], X.TasksOnNode[nodeID2][idx+1:])
X.TasksOnNode[nodeID2] = X.TasksOnNode[nodeID2][:len(X.TasksOnNode[nodeID2])-1]
//fmt.Println(X.TasksOnNode)
}
/* reschedule tasks on tgt node */
var tasks []Task
if _, ok := X.TasksOnNode[nodeID]; ok {
for _, task := range X.TasksOnNode[nodeID] {
tasks = append(tasks, task)
}
delete(X.TasksOnNode, nodeID)
}
if _, ok := X.Nodes[nodeID]; ok {
delete(X.Nodes, nodeID)
}
X.Nodes[nodeID] = Y.(Allocation).Nodes[nodeID]
var newTasksOnNode []Task
for _, task := range Y.(Allocation).TasksOnNode[nodeID] {
newTasksOnNode = append(newTasksOnNode, task)
}
X.TasksOnNode[nodeID] = newTasksOnNode
/* first-fit */
for _, task := range tasks {
flag := false
for nodeID3 := range X.Nodes {
if len(X.TasksOnNode[nodeID3]) < 3 {
X.TasksOnNode[nodeID3] = append(X.TasksOnNode[nodeID3], task)
flag = true
break
}
}
if !flag {
X.Valid["flag"] = false
}
}
//fmt.Println()
//fmt.Println("crossover", X.TasksOnNode)
}
// Clone a Vector to produce a new one that points to a different slice.
func (X Allocation) Clone() eaopt.Genome {
if !X.Valid["flag"] {
//fmt.Println(X.Valid)
}
Y := Allocation{TasksOnNode: map[string][]Task{}, Nodes: map[string]Node{}, Valid: map[string]bool{"flag": X.Valid["flag"]}}
for id, node := range X.Nodes {
Y.Nodes[id] = node
}
for id, tasks := range X.TasksOnNode {
var t []Task
for _, task := range tasks {
t = append(t, task)
}
Y.TasksOnNode[id] = t
}
return Y
}
// VectorFactory returns a random vector by generating 2 values uniformally
// distributed between -10 and 10.
func VectorFactory(rng *rand.Rand) eaopt.Genome {
allocation := Allocation{TasksOnNode: map[string][]Task{}, Nodes: map[string]Node{}, Valid: map[string]bool{"flag": true}}
var nodes []Node
var tasks []Task
for _, node := range nodesMap {
nodes = append(nodes, node)
}
for _, task := range tasksMap {
tasks = append(tasks, task)
}
/* shuffle */
for n := len(nodes); n > 0; n-- {
randIndex := rng.Intn(n)
nodes[n-1], nodes[randIndex] = nodes[randIndex], nodes[n-1]
}
for n := len(tasks); n > 0; n-- {
randIndex := rng.Intn(n)
tasks[n-1], tasks[randIndex] = tasks[randIndex], tasks[n-1]
}
/* pick nodes */
for _, node := range nodesMap {
allocation.Nodes[node.ClientID] = node
}
/* first-fit */
for _, task := range tasks {
flag := false
for id, _ := range allocation.Nodes {
if len(allocation.TasksOnNode[id]) < 3 {
allocation.TasksOnNode[id] = append(allocation.TasksOnNode[id], task)
flag = true
break
}
}
if !flag {
allocation.Valid["flag"] = false
}
}
//fmt.Println(allocation)
return allocation
}
func main() {
numTask := 100
nodesMap = map[string]Node{}
tasksMap = map[string]Task{}
for i := 0; i < numTask*3; i++ {
nodesMap[strconv.Itoa(i)] = Node{ClientID: strconv.Itoa(i), Rack: i % 2, Domain: i % 1}
}
for i := 0; i < numTask; i++ {
isPS := false
if i%5 == 0 {
isPS = true
}
tasksMap[strconv.Itoa(i)] = Task{Name: strconv.Itoa(i), IsPS: isPS}
}
// Instantiate a GA with a GAConfig
var ga, err = eaopt.NewDefaultGAConfig().NewGA()
if err != nil {
fmt.Println(err)
return
}
// Set the number of generations to run for
ga.NGenerations = 4000
ga.NPops = 1
ga.PopSize = 20
// Add a custom print function to track progress
ga.Callback = func(ga *eaopt.GA) {
fmt.Printf("Best fitness at generation %d: %f\n", ga.Generations, ga.HallOfFame[0].Fitness)
}
bestFitness := -1.0
count := 0
ga.EarlyStop = func(ga *eaopt.GA) bool {
gap := math.Abs(ga.HallOfFame[0].Fitness - bestFitness)
if gap <= 0.000001 {
if count >= 20 {
fmt.Println("Early Stop")
return true
} else {
count++
}
} else {
bestFitness = ga.HallOfFame[0].Fitness
count = 1
}
return false
}
// Find the minimum
ts := time.Now()
err = ga.Minimize(VectorFactory)
fmt.Println(time.Since(ts))
if err != nil {
fmt.Println(err)
return
}
}