1
0
mirror of https://github.com/newnius/YAO-scheduler.git synced 2025-12-16 16:36:45 +00:00
Files
YAO-scheduler/src/ga_test.go

190 lines
4.7 KiB
Go
Raw Normal View History

2020-05-25 21:41:39 +08:00
package main
import (
"strconv"
"math/rand"
"time"
2020-05-26 20:46:11 +08:00
log "github.com/sirupsen/logrus"
2020-05-25 21:41:39 +08:00
"github.com/MaxHalford/eaopt"
"math"
"testing"
)
2020-05-26 20:46:11 +08:00
func TgenerateCase() ([]NodeStatus, []Task) {
numTask := 6
2020-05-25 21:41:39 +08:00
2020-05-26 20:46:11 +08:00
var nodes []NodeStatus
var tasks []Task
2020-05-25 21:41:39 +08:00
for i := 0; i < numTask*3; i++ {
2020-05-26 20:46:11 +08:00
node := NodeStatus{ClientID: strconv.Itoa(i), Rack: "Rack-" + strconv.Itoa(i%40), Domain: "Domain-" + strconv.Itoa(i%4)}
2020-05-25 21:41:39 +08:00
node.NumCPU = 24
2020-05-26 20:46:11 +08:00
node.UtilCPU = 2.0
2020-05-25 21:41:39 +08:00
node.MemTotal = 188
2020-05-26 20:46:11 +08:00
node.MemAvailable = 20
2020-05-25 21:41:39 +08:00
node.TotalBW = 100
2020-05-26 20:46:11 +08:00
//cnt := 4
2020-05-25 21:41:39 +08:00
cnt := rand.Intn(3) + 1
for i := 0; i < cnt; i++ {
2020-05-26 20:46:11 +08:00
node.Status = append(node.Status, GPUStatus{MemoryTotal: 11439, MemoryAllocated: 0, UUID: node.ClientID + "-" + strconv.Itoa(i)})
2020-05-25 21:41:39 +08:00
}
2020-05-26 20:46:11 +08:00
nodes = append(nodes, node)
2020-05-25 21:41:39 +08:00
}
for i := 0; i < numTask; i++ {
isPS := false
2020-05-26 20:46:11 +08:00
if i%4 == 0 {
2020-05-25 21:41:39 +08:00
isPS = true
}
2020-05-26 20:46:11 +08:00
task := Task{Name: "task-" + strconv.Itoa(i), IsPS: isPS}
2020-05-25 21:41:39 +08:00
task.Memory = 4
task.NumberCPU = 2
task.NumberGPU = 1
2020-05-26 20:46:11 +08:00
task.MemoryGPU = 4096
tasks = append(tasks, task)
2020-05-25 21:41:39 +08:00
}
2020-05-26 20:46:11 +08:00
return nodes, tasks
}
2020-05-25 21:41:39 +08:00
2020-05-26 20:46:11 +08:00
func TestBestFit(t *testing.T) {
nodes, tasks := TgenerateCase()
for _, node := range nodes {
log.Info(node)
2020-05-25 21:41:39 +08:00
}
s := time.Now()
allocation := fastBestFit(nodes, tasks)
log.Println(time.Since(s))
2020-05-26 20:46:11 +08:00
log.Println(allocation)
}
func TestGA(t *testing.T) {
return
nodes, tasks := TgenerateCase()
2020-05-25 21:41:39 +08:00
// Instantiate a GA with a GAConfig
var ga, err = eaopt.NewDefaultGAConfig().NewGA()
if err != nil {
log.Println(err)
return
}
// Set the number of generations to run for
ga.NGenerations = math.MaxInt32
ga.NPops = 1
2020-05-26 20:46:11 +08:00
ga.PopSize = 30 + uint(len(tasks)/2)
2020-05-25 21:41:39 +08:00
// Add a custom print function to track progress
ga.Callback = func(ga *eaopt.GA) {
log.Printf("Best fitness at generation %d: %f\n", ga.Generations, ga.HallOfFame[0].Fitness)
}
bestFitness := math.MaxFloat64
count := 0
ts := time.Now()
ga.EarlyStop = func(ga *eaopt.GA) bool {
gap := math.Abs(ga.HallOfFame[0].Fitness - bestFitness)
if gap <= 0.000001 || ga.HallOfFame[0].Fitness >= bestFitness {
if count >= 30 || time.Since(ts) > time.Second*30 {
log.Println("Early Stop")
return true
} else {
count++
}
} else {
bestFitness = ga.HallOfFame[0].Fitness
count = 1
}
return false
}
2020-05-26 20:46:11 +08:00
var f = func(rng *rand.Rand) eaopt.Genome {
allocation := Allocation{TasksOnNode: map[string][]Task{}, Nodes: map[string]NodeStatus{}, Flags: map[string]bool{"valid": true}}
//log.Println(nodes)
var nodesT []NodeStatus
for _, node := range nodes {
nodesT = append(nodesT, node.Copy())
}
//nodesT[0].Status[0].MemoryAllocated = 100
//log.Println(nodes[0].Status[0].MemoryAllocated)
//log.Println(&nodesT[0])
//log.Println(&nodes[0])
for _, node := range nodesT {
allocation.Nodes[node.ClientID] = node
}
for _, task := range tasks {
allocation.Tasks = append(allocation.Tasks, task)
}
/* shuffle */
for n := len(tasks); n > 0; n-- {
randIndex := rng.Intn(n)
allocation.Tasks[n-1], allocation.Tasks[randIndex] = allocation.Tasks[randIndex], allocation.Tasks[n-1]
}
/* pick nodes */
for _, node := range nodesT {
allocation.Nodes[node.ClientID] = node
allocation.NodeIDs = append(allocation.NodeIDs, node.ClientID)
}
t := rng.Int() % 10
if t == 0 {
/* best-fit */
ts := time.Now()
allocation.TasksOnNode = fastBestFit(nodesT, tasks).TasksOnNode
log.Println(time.Since(ts))
//fmt.Println("Best Fit")
} else if t%2 == 0 {
/* first-fit */
for _, task := range tasks {
if nodeID, ok := randomFit(allocation, task); ok {
allocation.TasksOnNode[nodeID] = append(allocation.TasksOnNode[nodeID], task)
for i := range allocation.Nodes[nodeID].Status {
if allocation.Nodes[nodeID].Status[i].MemoryAllocated == 0 {
allocation.Nodes[nodeID].Status[i].MemoryAllocated += task.MemoryGPU
break
}
}
} else {
allocation.Flags["valid"] = false
}
}
} else {
/* random-fit */
for _, task := range tasks {
if nodeID, ok := randomFit(allocation, task); ok {
allocation.TasksOnNode[nodeID] = append(allocation.TasksOnNode[nodeID], task)
for i := range allocation.Nodes[nodeID].Status {
if allocation.Nodes[nodeID].Status[i].MemoryAllocated == 0 {
allocation.Nodes[nodeID].Status[i].MemoryAllocated += task.MemoryGPU
break
}
}
} else {
allocation.Flags["valid"] = false
}
}
}
//fmt.Println(evaluatue(allocation))
//fmt.Println(allocation)
return allocation
}
2020-05-25 21:41:39 +08:00
// Find the minimum
2020-05-26 20:46:11 +08:00
err = ga.Minimize(f)
2020-05-25 21:41:39 +08:00
log.Println(time.Since(ts))
log.Println(ga.HallOfFame[0].Genome.(Allocation).TasksOnNode)
2020-05-26 20:46:11 +08:00
//log.Println(ga.HallOfFame[0].Genome.(Allocation).Flags)
//log.Println(ga.HallOfFame[0].Genome.(Allocation).Nodes)
2020-05-25 21:41:39 +08:00
if err != nil {
log.Println(err)
return
}
}