1
0
mirror of https://github.com/newnius/YAO-scheduler.git synced 2025-12-15 08:16:43 +00:00
This commit is contained in:
2020-05-24 21:07:02 +08:00
parent 73600d3595
commit 0705c0630d
13 changed files with 486 additions and 843 deletions

View File

@@ -5,16 +5,9 @@ import (
"time"
log "github.com/sirupsen/logrus"
"sort"
"math/rand"
"math"
)
type ResourceCount struct {
NumberGPU int
MemoryGPU int
CPU int
Memory int
}
type SchedulerFair struct {
history []*Job
historyMu sync.Mutex
@@ -33,14 +26,6 @@ type SchedulerFair struct {
enabled bool
parallelism int
enableShare bool
enableShareRatio float64
enablePreSchedule bool
enablePreScheduleRatio float64
UsingGPU int
UsingGPUMu sync.Mutex
allocatingGPU int
allocatingGPUMu sync.Mutex
@@ -77,12 +62,6 @@ func (scheduler *SchedulerFair) Start() {
scheduler.schedulingJobsCnt = 0
scheduler.queueUsingGPU = map[string]int{}
scheduler.enableShare = true
scheduler.enableShareRatio = 0.75
scheduler.enablePreSchedule = true
scheduler.enablePreScheduleRatio = 0.95
scheduler.UsingGPU = 0
scheduler.allocatingGPU = 0
scheduler.queuesSchedulingCnt = map[string]int{}
@@ -132,8 +111,9 @@ func (scheduler *SchedulerFair) Start() {
}
scheduler.queuesUsingGPUMu.Unlock()
log.Info(cnt, reserved, pool.TotalGPU, scheduler.UsingGPU, scheduler.allocatingGPU)
if scheduler.schedulingJobsCnt > 1 && (cnt*10+(scheduler.allocatingGPU)*13 > (pool.TotalGPU-scheduler.UsingGPU-reserved)*10) {
pool := InstanceOfResourcePool()
log.Info(cnt, reserved, pool.TotalGPU, pool.UsingGPU, scheduler.allocatingGPU)
if scheduler.schedulingJobsCnt > 1 && (cnt*10+(scheduler.allocatingGPU)*13 > (pool.TotalGPU-pool.UsingGPU-reserved)*10) {
scheduler.schedulingMu.Lock()
scheduler.schedulingJobsCnt--
scheduler.schedulingMu.Unlock()
@@ -203,7 +183,8 @@ func (scheduler *SchedulerFair) Start() {
}
scheduler.queuesUsingGPUMu.Unlock()
if pool.TotalGPU-scheduler.UsingGPU-scheduler.allocatingGPU*13/10 < 0 {
pool := InstanceOfResourcePool()
if pool.TotalGPU-pool.UsingGPU-scheduler.allocatingGPU*13/10 < 0 {
continue
}
@@ -343,273 +324,46 @@ func (scheduler *SchedulerFair) Schedule(job Job) {
job.Status = Created
}
func (scheduler *SchedulerFair) AcquireResource(job Job, task Task, nodes []NodeStatus) NodeStatus {
segID := rand.Intn(pool.poolsCount)
if pool.TotalGPU < 100 {
segID = 0
}
res := NodeStatus{}
start := &pool.pools[segID]
if start.Nodes == nil {
start = start.Next
}
func (scheduler *SchedulerFair) AcquireResource(job Job) []NodeStatus {
res := InstanceOfResourcePool().acquireResource(job)
locks := map[int]*sync.Mutex{}
if len(res) != 0 {
for _, task := range job.Tasks {
scheduler.queuesUsingGPUMu.Lock()
scheduler.queueUsingGPU[job.Group] += task.NumberGPU
scheduler.queuesUsingGPUMu.Unlock()
allocationType := 0
availableGPUs := map[string][]GPUStatus{}
var candidates []*NodeStatus
/* first, choose sharable GPUs */
if scheduler.enableShare && (pool.TotalGPU != 0 && float64(scheduler.UsingGPU)/float64(pool.TotalGPU) >= scheduler.enableShareRatio) {
// check sharable
allocationType = 1
if util, valid := InstanceOfOptimizer().predictUtilGPU(job.Name); valid {
for cur := start; cur.ID < cur.Next.ID; {
if _, ok := locks[cur.ID]; !ok {
cur.Lock.Lock()
locks[cur.ID] = &cur.Lock
}
for _, node := range cur.Nodes {
var available []GPUStatus
for _, status := range node.Status {
if status.MemoryAllocated > 0 && status.MemoryTotal > task.MemoryGPU+status.MemoryAllocated {
if jobs, ok := pool.bindings[status.UUID]; ok {
totalUtil := util
for job := range jobs {
if utilT, ok := InstanceOfOptimizer().predictUtilGPU(job); ok {
totalUtil += utilT
} else {
totalUtil += 100
}
}
if totalUtil < 100 {
available = append(available, status)
availableGPUs[node.ClientID] = available
}
}
}
}
if len(available) >= task.NumberGPU {
candidates = append(candidates, node)
if len(candidates) >= 8 {
break
}
}
}
if len(candidates) >= 8 {
break
}
cur = cur.Next
if cur.ID == start.ID {
break
}
}
scheduler.allocatingGPUMu.Lock()
scheduler.allocatingGPU -= task.NumberGPU
scheduler.allocatingGPUMu.Unlock()
}
//log.Info(candidates)
}
/* second round, find vacant gpu */
flag := false
reserved := scheduler.reservedGPU
scheduler.queuesUsingGPUMu.Lock()
for g, v := range scheduler.queueUsingGPU {
if InstanceOfGroupManager().groups[g].Reserved {
reserved -= v
}
}
scheduler.queuesUsingGPUMu.Unlock()
if g, ok := InstanceOfGroupManager().groups[job.Group]; ok && g.Reserved && g.NumGPU > scheduler.queueUsingGPU[job.Group] {
flag = true
}
if task.NumberGPU <= pool.TotalGPU-scheduler.UsingGPU-reserved {
flag = true
}
if len(candidates) == 0 && flag {
allocationType = 2
for cur := start; cur.ID < cur.Next.ID; {
if _, ok := locks[cur.ID]; !ok {
cur.Lock.Lock()
locks[cur.ID] = &cur.Lock
}
for _, node := range cur.Nodes {
var available []GPUStatus
for _, status := range node.Status {
if status.MemoryAllocated == 0 && status.MemoryUsed < 10 {
available = append(available, status)
}
}
if len(available) >= task.NumberGPU {
candidates = append(candidates, node)
availableGPUs[node.ClientID] = available
if len(candidates) >= 8 {
break
}
}
}
if len(candidates) >= 8 {
break
}
cur = cur.Next
if cur.ID == start.ID {
break
}
}
//log.Info(candidates)
}
/* third round, find gpu to be released */
if len(candidates) == 0 && len(job.Tasks) == 1 && task.NumberGPU == 1 && scheduler.enablePreSchedule {
estimate, valid := InstanceOfOptimizer().predictTime(job.Name)
//log.Info(pool.TotalGPU)
//log.Info(estimate, valid)
//log.Info(scheduler.UsingGPU)
if pool.TotalGPU != 0 && float64(scheduler.UsingGPU)/float64(pool.TotalGPU) >= scheduler.enablePreScheduleRatio && valid {
allocationType = 3
for cur := start; cur.ID < cur.Next.ID; {
if _, ok := locks[cur.ID]; !ok {
cur.Lock.Lock()
locks[cur.ID] = &cur.Lock
}
for _, node := range cur.Nodes {
var available []GPUStatus
for _, status := range node.Status {
bindings := pool.getBindings()
if tasks, ok := bindings[status.UUID]; ok {
if len(tasks) > 1 || status.MemoryAllocated == 0 {
continue
}
for task_t, s := range tasks {
est, valid2 := InstanceOfOptimizer().predictTime(task_t)
if valid2 {
now := (int)(time.Now().Unix())
log.Info(s, now, estimate, est)
if now-s > est.Total-est.Post-estimate.Pre-15 {
available = append(available, status)
}
}
}
}
}
if len(available) >= task.NumberGPU {
candidates = append(candidates, node)
availableGPUs[node.ClientID] = available
if len(candidates) >= 8 {
break
}
}
}
if len(candidates) >= 8 {
break
}
}
//log.Info(candidates)
}
}
if len(candidates) > 0 {
log.Info("allocationType is ", allocationType)
//log.Info(candidates)
}
/* assign */
if len(candidates) > 0 {
node := pool.pickNode(candidates, availableGPUs, task, job, nodes)
res.ClientID = node.ClientID
res.ClientHost = node.ClientHost
res.Status = availableGPUs[node.ClientID][0:task.NumberGPU]
res.NumCPU = task.NumberCPU
res.MemTotal = task.Memory
for i := range res.Status {
for j := range node.Status {
if res.Status[i].UUID == node.Status[j].UUID {
if node.Status[j].MemoryAllocated == 0 {
scheduler.UsingGPUMu.Lock()
scheduler.UsingGPU ++
scheduler.UsingGPUMu.Unlock()
}
node.Status[j].MemoryAllocated += task.MemoryGPU
res.Status[i].MemoryTotal = task.MemoryGPU
}
}
}
for _, t := range res.Status {
scheduler.Attach(t.UUID, job.Name)
}
scheduler.queuesUsingGPUMu.Lock()
scheduler.queueUsingGPU[job.Group] += task.NumberGPU
scheduler.queuesUsingGPUMu.Unlock()
scheduler.allocatingGPUMu.Lock()
scheduler.allocatingGPU -= task.NumberGPU
scheduler.allocatingGPUMu.Unlock()
log.Info("allocatingGPU is ", scheduler.allocatingGPU)
go func(nodes []NodeStatus) {
for _, node := range nodes {
scheduler.resourceAllocationsMu.Lock()
if _, ok := scheduler.resourceAllocations[job.Group]; !ok {
scheduler.resourceAllocations[job.Group] = &ResourceCount{}
}
cnt, _ := scheduler.resourceAllocations[job.Group]
cnt.CPU += node.MemTotal
cnt.Memory += node.NumCPU
for _, v := range node.Status {
cnt.NumberGPU ++
cnt.MemoryGPU += v.MemoryTotal
}
scheduler.resourceAllocationsMu.Unlock()
scheduler.UpdateNextQueue()
}
}(res)
}
for segID, lock := range locks {
log.Debug("Unlock ", segID)
lock.Unlock()
}
go func(res NodeStatus) {
if len(res.Status) == 0 {
return
}
scheduler.resourceAllocationsMu.Lock()
if _, ok := scheduler.resourceAllocations[job.Group]; !ok {
scheduler.resourceAllocations[job.Group] = &ResourceCount{}
}
cnt, _ := scheduler.resourceAllocations[job.Group]
cnt.CPU += res.MemTotal
cnt.Memory += res.NumCPU
for _, v := range res.Status {
cnt.NumberGPU ++
cnt.MemoryGPU += v.MemoryTotal
}
scheduler.resourceAllocationsMu.Unlock()
scheduler.UpdateNextQueue()
}(res)
return res
}
func (scheduler *SchedulerFair) ReleaseResource(job Job, agent NodeStatus) {
segID := pool.getNodePool(agent.ClientID)
seg := pool.pools[segID]
if seg.Nodes == nil {
seg = *seg.Next
}
seg.Lock.Lock()
defer seg.Lock.Unlock()
node := seg.Nodes[agent.ClientID]
for _, gpu := range agent.Status {
for j := range node.Status {
if gpu.UUID == node.Status[j].UUID {
node.Status[j].MemoryAllocated -= gpu.MemoryTotal
if node.Status[j].MemoryAllocated < 0 {
// in case of error
log.Warn(node.ClientID, "More Memory Allocated")
node.Status[j].MemoryAllocated = 0
}
if node.Status[j].MemoryAllocated == 0 {
scheduler.UsingGPUMu.Lock()
scheduler.UsingGPU--
scheduler.UsingGPUMu.Unlock()
log.Info(node.Status[j].UUID, " is released")
}
//log.Info(node.Status[j].MemoryAllocated)
}
}
}
InstanceOfResourcePool().releaseResource(job, agent)
scheduler.queuesUsingGPUMu.Lock()
if _, ok := scheduler.queueUsingGPU[job.Group]; ok {
scheduler.queueUsingGPU[job.Group] -= len(agent.Status)
@@ -712,7 +466,7 @@ func (scheduler *SchedulerFair) Summary() MsgSummary {
break
case Running:
runningJobsCounter++
break;
break
case Finished:
finishedJobsCounter++
case Stopped:
@@ -723,66 +477,15 @@ func (scheduler *SchedulerFair) Summary() MsgSummary {
summary.JobsPending = pendingJobsCounter
summary.JobsRunning = runningJobsCounter
FreeGPU := 0
UsingGPU := 0
start := pool.pools[0].Next
for cur := start; ; {
cur.Lock.Lock()
for _, node := range cur.Nodes {
for j := range node.Status {
if node.Status[j].MemoryAllocated == 0 {
FreeGPU++
} else {
UsingGPU++
}
}
}
cur.Lock.Unlock()
cur = cur.Next
if cur.ID == start.ID {
break
}
}
summary.FreeGPU = FreeGPU
summary.UsingGPU = UsingGPU
summary.FreeGPU, summary.UsingGPU = InstanceOfResourcePool().countGPU()
return summary
}
func (scheduler *SchedulerFair) AcquireNetwork() string {
return pool.acquireNetwork()
}
func (scheduler *SchedulerFair) ReleaseNetwork(network string) {
pool.releaseNetwork(network)
}
func (scheduler *SchedulerFair) UpdateNextQueue() {
next := "default"
quota := 9999.0
quota := math.MaxFloat64
NumberGPU := 0.00001
MemoryGPU := 0.00001
CPU := 0.00001
Memory := 0.0001
start := pool.pools[0].Next
for cur := start; ; {
cur.Lock.Lock()
for _, node := range cur.Nodes {
CPU += float64(node.NumCPU)
Memory += float64(node.MemTotal)
for _, card := range node.Status {
NumberGPU += 1.0
MemoryGPU += float64(card.MemoryTotal)
}
}
cur.Lock.Unlock()
cur = cur.Next
if cur == start {
break
}
}
NumberGPU := float64(InstanceOfResourcePool().TotalGPU) + 0.00001
scheduler.queueMu.Lock()
for k, t := range scheduler.queues {
@@ -795,13 +498,8 @@ func (scheduler *SchedulerFair) UpdateNextQueue() {
}
v := scheduler.resourceAllocations[k]
tmp := 0.0
tmp += float64(v.CPU) / CPU
tmp += float64(v.Memory) / Memory
tmp += float64(v.NumberGPU) / NumberGPU
tmp += float64(v.MemoryGPU) / MemoryGPU
tmp := float64(v.NumberGPU) / NumberGPU
scheduler.resourceAllocationsMu.Unlock()
tmp /= 4
weight := 10
if g, ok2 := InstanceOfGroupManager().groups[k]; !ok2 {
weight = g.Weight
@@ -817,14 +515,6 @@ func (scheduler *SchedulerFair) UpdateNextQueue() {
log.Debug("updateNextQueue ->", next)
}
func (scheduler *SchedulerFair) Attach(GPU string, job string) {
pool.attach(GPU, job)
}
func (scheduler *SchedulerFair) Detach(GPU string, job Job) {
pool.detach(GPU, job)
}
func (scheduler *SchedulerFair) Enable() bool {
scheduler.enabled = true
log.Info("scheduler is enabled ", time.Now())
@@ -843,18 +533,6 @@ func (scheduler *SchedulerFair) UpdateParallelism(parallelism int) bool {
return true
}
func (scheduler *SchedulerFair) SetShareRatio(ratio float64) bool {
scheduler.enableShareRatio = ratio
log.Info("enableShareRatio is updated to ", ratio)
return true
}
func (scheduler *SchedulerFair) SetPreScheduleRatio(ratio float64) bool {
scheduler.enablePreScheduleRatio = ratio
log.Info("enablePreScheduleRatio is updated to ", ratio)
return true
}
func (scheduler *SchedulerFair) updateGroup(group Group) bool {
num := 0
for _, g := range InstanceOfGroupManager().List().Groups {