1
0
mirror of https://github.com/newnius/YAO-scheduler.git synced 2025-12-16 00:26:43 +00:00
This commit is contained in:
2020-05-26 20:46:11 +08:00
parent f7149310e8
commit ec30e79c81
5 changed files with 298 additions and 218 deletions

View File

@@ -4,53 +4,61 @@ import (
"strconv"
"math/rand"
"time"
"log"
log "github.com/sirupsen/logrus"
"github.com/MaxHalford/eaopt"
"math"
"testing"
)
func TestGA(t *testing.T) {
numTask := 20
nodesMap = map[string]NodeStatus{}
tasksMap = map[string]Task{}
for i := 0; i < numTask*3; i++ {
node := NodeStatus{ClientID: strconv.Itoa(i), Rack: strconv.Itoa(i % 40), Domain: strconv.Itoa(i % 4)}
node.NumCPU = 24
node.MemTotal = 188
node.TotalBW = 100
cnt := rand.Intn(3) + 1
for i := 0; i < cnt; i++ {
node.Status = append(node.Status, GPUStatus{MemoryTotal: 11439, MemoryAllocated: 0, UUID: node.ClientID + strconv.Itoa(i)})
}
nodesMap[strconv.Itoa(i)] = node
}
for i := 0; i < numTask; i++ {
isPS := false
if i >= 3 {
isPS = true
}
task := Task{Name: strconv.Itoa(i), IsPS: isPS}
task.Memory = 4
task.NumberCPU = 2
task.NumberGPU = 1
tasksMap[strconv.Itoa(i)] = task
}
func TgenerateCase() ([]NodeStatus, []Task) {
numTask := 6
var nodes []NodeStatus
var tasks []Task
for _, node := range nodesMap {
for i := 0; i < numTask*3; i++ {
node := NodeStatus{ClientID: strconv.Itoa(i), Rack: "Rack-" + strconv.Itoa(i%40), Domain: "Domain-" + strconv.Itoa(i%4)}
node.NumCPU = 24
node.UtilCPU = 2.0
node.MemTotal = 188
node.MemAvailable = 20
node.TotalBW = 100
//cnt := 4
cnt := rand.Intn(3) + 1
for i := 0; i < cnt; i++ {
node.Status = append(node.Status, GPUStatus{MemoryTotal: 11439, MemoryAllocated: 0, UUID: node.ClientID + "-" + strconv.Itoa(i)})
}
nodes = append(nodes, node)
}
for _, task := range tasksMap {
for i := 0; i < numTask; i++ {
isPS := false
if i%4 == 0 {
isPS = true
}
task := Task{Name: "task-" + strconv.Itoa(i), IsPS: isPS}
task.Memory = 4
task.NumberCPU = 2
task.NumberGPU = 1
task.MemoryGPU = 4096
tasks = append(tasks, task)
}
return nodes, tasks
}
func TestBestFit(t *testing.T) {
nodes, tasks := TgenerateCase()
for _, node := range nodes {
log.Info(node)
}
s := time.Now()
allocation := fastBestFit(nodes, tasks)
log.Println(time.Since(s))
log.Println(allocation)
}
func TestGA(t *testing.T) {
return
nodes, tasks := TgenerateCase()
// Instantiate a GA with a GAConfig
var ga, err = eaopt.NewDefaultGAConfig().NewGA()
@@ -62,7 +70,7 @@ func TestGA(t *testing.T) {
// Set the number of generations to run for
ga.NGenerations = math.MaxInt32
ga.NPops = 1
ga.PopSize = 30 + uint(numTask/2)
ga.PopSize = 30 + uint(len(tasks)/2)
// Add a custom print function to track progress
ga.Callback = func(ga *eaopt.GA) {
@@ -90,15 +98,92 @@ func TestGA(t *testing.T) {
return false
}
var f = func(rng *rand.Rand) eaopt.Genome {
allocation := Allocation{TasksOnNode: map[string][]Task{}, Nodes: map[string]NodeStatus{}, Flags: map[string]bool{"valid": true}}
//log.Println(nodes)
var nodesT []NodeStatus
for _, node := range nodes {
nodesT = append(nodesT, node.Copy())
}
//nodesT[0].Status[0].MemoryAllocated = 100
//log.Println(nodes[0].Status[0].MemoryAllocated)
//log.Println(&nodesT[0])
//log.Println(&nodes[0])
for _, node := range nodesT {
allocation.Nodes[node.ClientID] = node
}
for _, task := range tasks {
allocation.Tasks = append(allocation.Tasks, task)
}
/* shuffle */
for n := len(tasks); n > 0; n-- {
randIndex := rng.Intn(n)
allocation.Tasks[n-1], allocation.Tasks[randIndex] = allocation.Tasks[randIndex], allocation.Tasks[n-1]
}
/* pick nodes */
for _, node := range nodesT {
allocation.Nodes[node.ClientID] = node
allocation.NodeIDs = append(allocation.NodeIDs, node.ClientID)
}
t := rng.Int() % 10
if t == 0 {
/* best-fit */
ts := time.Now()
allocation.TasksOnNode = fastBestFit(nodesT, tasks).TasksOnNode
log.Println(time.Since(ts))
//fmt.Println("Best Fit")
} else if t%2 == 0 {
/* first-fit */
for _, task := range tasks {
if nodeID, ok := randomFit(allocation, task); ok {
allocation.TasksOnNode[nodeID] = append(allocation.TasksOnNode[nodeID], task)
for i := range allocation.Nodes[nodeID].Status {
if allocation.Nodes[nodeID].Status[i].MemoryAllocated == 0 {
allocation.Nodes[nodeID].Status[i].MemoryAllocated += task.MemoryGPU
break
}
}
} else {
allocation.Flags["valid"] = false
}
}
} else {
/* random-fit */
for _, task := range tasks {
if nodeID, ok := randomFit(allocation, task); ok {
allocation.TasksOnNode[nodeID] = append(allocation.TasksOnNode[nodeID], task)
for i := range allocation.Nodes[nodeID].Status {
if allocation.Nodes[nodeID].Status[i].MemoryAllocated == 0 {
allocation.Nodes[nodeID].Status[i].MemoryAllocated += task.MemoryGPU
break
}
}
} else {
allocation.Flags["valid"] = false
}
}
}
//fmt.Println(evaluatue(allocation))
//fmt.Println(allocation)
return allocation
}
// Find the minimum
err = ga.Minimize(VectorFactory)
err = ga.Minimize(f)
log.Println(time.Since(ts))
log.Println(ga.HallOfFame[0].Genome.(Allocation).TasksOnNode)
//fmt.Println(ga.HallOfFame[0].Genome.(Allocation).Nodes)
//log.Println(ga.HallOfFame[0].Genome.(Allocation).Flags)
//log.Println(ga.HallOfFame[0].Genome.(Allocation).Nodes)
if err != nil {
log.Println(err)
return
}
log.Println(allocation)
}