1
0
mirror of https://github.com/newnius/YAO-scheduler.git synced 2025-12-12 23:36:44 +00:00
Files
YAO-scheduler/src/optimizer.go
2020-06-21 13:14:10 +08:00

303 lines
7.4 KiB
Go

package main
import (
log "github.com/sirupsen/logrus"
"sync"
"strings"
"io/ioutil"
"strconv"
"encoding/json"
"time"
"math"
)
type Optimizer struct {
scheduler Scheduler
killedFlag bool
predicts map[string]*OptimizerJobExecutionTime
jobUtilsGPU map[string]*OptimizerUtilGPU
cache map[string]*OptimizerJobExecutionTime
stats map[string]map[string]float64
}
var optimizerInstance *Optimizer
var OptimizerInstanceLock sync.Mutex
func InstanceOfOptimizer() *Optimizer {
defer OptimizerInstanceLock.Unlock()
OptimizerInstanceLock.Lock()
if optimizerInstance == nil {
optimizerInstance = &Optimizer{}
optimizerInstance.predicts = map[string]*OptimizerJobExecutionTime{}
optimizerInstance.jobUtilsGPU = map[string]*OptimizerUtilGPU{}
optimizerInstance.cache = map[string]*OptimizerJobExecutionTime{}
optimizerInstance.stats = map[string]map[string]float64{}
}
return optimizerInstance
}
func (optimizer *Optimizer) init(conf Configuration) {
log.Info("optimizer started")
}
func (optimizer *Optimizer) feedStats(job string, stats [][]TaskStatus) {
go func() {
var UtilsCPU []float64
var Mems []float64
var BwRxs []float64
var BwTxs []float64
str := strings.Split(job, "-")
if len(str) == 2 {
jobName := str[0]
for _, stat := range stats {
for _, task := range stat {
UtilsCPU = append(UtilsCPU, task.UtilCPU)
Mems = append(Mems, task.Mem)
BwRxs = append(BwRxs, task.BwRX)
BwTxs = append(BwTxs, task.BWTx)
}
}
optimizer.stats[jobName] = map[string]float64{
"cpu": optimizer.mean(UtilsCPU),
"cpu_std": optimizer.std(UtilsCPU),
"mem": optimizer.max(Mems),
"bw_rx": optimizer.mean(BwRxs),
"bw_tx": optimizer.mean(BwTxs),
}
}
}()
}
func (optimizer *Optimizer) max(values []float64) float64 {
value := 0.0
for _, v := range values {
if v > value {
value = v
}
}
return value
}
func (optimizer *Optimizer) mean(values []float64) float64 {
sum := 0.0
for _, v := range values {
sum += v
}
return sum / float64(len(values))
}
func (optimizer *Optimizer) std(values []float64) float64 {
mean := optimizer.mean(values)
std := 0.0
for j := 0; j < len(values); j++ {
// The use of Pow math function func Pow(x, y float64) float64
std += math.Pow(values[j]-mean, 2)
}
// The use of Sqrt math function func Sqrt(x float64) float64
std = math.Sqrt(std / float64(len(values)))
return std
}
func (optimizer *Optimizer) describe(job string) map[string]float64 {
if stat, ok := optimizer.stats[job]; ok {
return stat
}
return map[string]float64{}
}
func (optimizer *Optimizer) feed(job string, utils []UtilGPUTimeSeries) {
log.Info("optimizer feed")
//log.Info(job, utils)
if len(utils) == 0 {
return
}
go func() {
str := strings.Split(job, "-")
if len(str) == 2 {
jobName := str[0]
sum := 0
for i := 0; i < len(utils); i++ {
sum += utils[i].Util
}
sum /= len(utils)
if _, ok := optimizer.jobUtilsGPU[jobName]; !ok {
optimizer.jobUtilsGPU[jobName] = &OptimizerUtilGPU{}
}
t := optimizer.jobUtilsGPU[jobName]
t.Util = (t.Version*t.Util + sum) / (t.Version + 1)
t.Version++
preTime := 0
for i := 0; i < len(utils); i++ {
if utils[i].Util > 15 {
preTime = utils[i].Time - utils[0].Time
break
}
}
postTime := 0
for i := len(utils) - 1; i >= 0; i-- {
if utils[i].Util > 15 {
postTime = utils[len(utils)-1].Time - utils[i].Time
break
}
}
if _, ok := optimizer.predicts[jobName]; !ok {
optimizer.predicts[jobName] = &OptimizerJobExecutionTime{}
}
totalTime := utils[len(utils)-1].Time - utils[0].Time
predict := optimizer.predicts[jobName]
if predict.Version == 0 {
predict.Pre = preTime
predict.Post = postTime
predict.Total = totalTime
predict.Main = predict.Total - predict.Pre - predict.Post
if predict.Main < 0 {
predict.Main = 0
}
}
predict.Pre = (predict.Pre*95 + preTime*5) / 100
predict.Post = (predict.Post*95 + postTime*5) / 100
predict.Total = (predict.Total*95 + totalTime*5) / 100
predict.Main = predict.Total - predict.Pre - predict.Post
if predict.Main < 0 {
predict.Main = 0
}
predict.Version++
optimizer.feedData(jobName, predict.Version, 0, 0, 0, predict.Total)
if predict.Version%10 == 0 && predict.Version > 30 {
optimizer.train(jobName)
}
}
}()
}
func (optimizer *Optimizer) predictUtilGPU(job string) (int, bool) {
str := strings.Split(job, "-")
if len(str) == 2 {
jobName := str[0]
if _, ok := optimizer.jobUtilsGPU[jobName]; ok {
return optimizer.jobUtilsGPU[jobName].Util, optimizer.jobUtilsGPU[jobName].Version >= 5
}
}
return 100, false
}
func (optimizer *Optimizer) predictTime(job string) (*OptimizerJobExecutionTime, bool) {
str := strings.Split(job, "-")
if len(str) == 2 {
jobName := str[0]
if est, ok := optimizer.cache[jobName]; ok && est.Version > (int)(time.Now().Unix())-300 {
return est, true
}
if est, ok := optimizer.predicts[jobName]; ok {
if est.Version > 40 {
if est2, ok := optimizer.predict(jobName, est.Version); ok {
est2.Pre = est.Pre * est2.Total / est.Total
est2.Main = est.Main * est2.Total / est.Total
est2.Post = est.Post * est2.Total / est.Total
est2.Version = (int)(time.Now().Unix())
optimizer.cache[jobName] = &est2
return &est2, true
}
}
return est, est.Version >= 5
}
}
return &OptimizerJobExecutionTime{}, false
}
func (optimizer *Optimizer) getAllPredicts() map[string]*OptimizerJobExecutionTime {
return optimizer.predicts
}
func (optimizer *Optimizer) getAllGPUUtils() map[string]*OptimizerUtilGPU {
return optimizer.jobUtilsGPU
}
func (optimizer *Optimizer) feedData(job string, seq int, pre int, main int, post int, total int) {
spider := Spider{}
spider.Method = "GET"
params := "job=" + job + "&seq=" + strconv.Itoa(seq) + "&value=" + strconv.Itoa(total)
spider.URL = "http://yao-optimizer:8080/feed?" + params
err := spider.do()
if err != nil {
log.Warn(err)
return
}
resp := spider.getResponse()
if _, err := ioutil.ReadAll(resp.Body); err != nil {
log.Warn(err)
}
resp.Body.Close()
if err != nil {
log.Warn(err)
return
}
}
func (optimizer *Optimizer) train(job string) {
spider := Spider{}
spider.Method = "GET"
params := "job=" + job
spider.URL = "http://yao-optimizer:8080/train?" + params
err := spider.do()
if err != nil {
return
}
resp := spider.getResponse()
if _, err := ioutil.ReadAll(resp.Body); err != nil {
log.Warn(err)
}
resp.Body.Close()
if err != nil {
return
}
}
func (optimizer *Optimizer) predict(job string, seq int) (OptimizerJobExecutionTime, bool) {
spider := Spider{}
spider.Method = "GET"
params := "job=" + job + "&seq=" + strconv.Itoa(seq)
spider.URL = "http://yao-optimizer:8080/predict?" + params
err := spider.do()
if err != nil {
return OptimizerJobExecutionTime{}, false
}
resp := spider.getResponse()
body, err := ioutil.ReadAll(resp.Body)
resp.Body.Close()
if err != nil {
log.Warn(err)
return OptimizerJobExecutionTime{}, false
}
var res MsgOptimizerPredict
err = json.Unmarshal([]byte(string(body)), &res)
if err == nil {
return OptimizerJobExecutionTime{Total: res.Total, Pre: res.Pre, Main: res.Main, Post: res.Post}, true
}
return OptimizerJobExecutionTime{}, false
}
func (optimizer *Optimizer) PredictReq(jobName string, cmd string) MsgJobReq {
return MsgJobReq{CPU: 4, Mem: 4096, GPU: 1, MemGPU: 8192, BW: 150}
}