1
0
mirror of https://github.com/newnius/YAO-optimizer.git synced 2025-06-06 22:51:55 +00:00
YAO-optimizer/serve.py

260 lines
7.1 KiB
Python
Raw Normal View History

2020-04-29 14:18:18 +00:00
#!/usr/bin/python
from threading import Thread
from threading import Lock
from http.server import BaseHTTPRequestHandler, HTTPServer
import cgi
import json
from urllib import parse
2020-04-29 14:29:32 +00:00
import pandas as pd
2020-06-24 14:55:42 +00:00
import numpy as np
2020-04-29 15:22:56 +00:00
import csv
2020-05-02 10:32:07 +00:00
import random
2020-05-02 10:37:37 +00:00
import traceback
2020-06-24 14:55:42 +00:00
import pickle
import os
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
2020-04-29 14:18:18 +00:00
2020-06-24 14:55:42 +00:00
PORT_NUMBER = int(os.getenv('Port', 8080))
2020-04-29 14:18:18 +00:00
lock = Lock()
2020-05-02 09:16:18 +00:00
models = {}
2020-06-24 14:55:42 +00:00
def load_data(trainfile, testfile):
traindata = pd.read_csv(trainfile)
testdata = pd.read_csv(testfile)
feature_data = traindata.iloc[:, 1:-1]
label_data = traindata.iloc[:, -1]
test_feature = testdata.iloc[:, 1:]
return feature_data, label_data, test_feature
2020-05-02 09:16:18 +00:00
def train_models(job):
2020-06-24 14:55:42 +00:00
if job not in models or 'features' not in models[job]:
return
2020-05-02 09:16:18 +00:00
models[job]['lock'].acquire()
2020-07-01 03:42:52 +00:00
try:
for label in models[job]['labels']:
trainfile = './data/' + job + '_' + label + '.csv'
traindata = pd.read_csv(trainfile)
feature_data = traindata.iloc[:, 1:-1]
label_data = traindata.iloc[:, -1]
2020-05-02 09:16:18 +00:00
2020-07-01 03:42:52 +00:00
X_train, X_test, y_train, y_test = train_test_split(feature_data, label_data, test_size=0.01)
params = {
'n_estimators': 70,
'max_depth': 13,
'min_samples_split': 10,
'min_samples_leaf': 5, # 10
'max_features': len(models[job]['features']) - 1 # 7
}
# print(params)
model = RandomForestRegressor(**params)
model.fit(X_train, y_train)
2020-06-24 14:55:42 +00:00
2020-07-01 03:42:52 +00:00
# save the model to disk
modelname = './data/' + job + '_' + label + '.sav'
pickle.dump(model, open(modelname, 'wb'))
2020-05-02 09:16:18 +00:00
2020-07-01 03:42:52 +00:00
# 对测试集进行预测
y_pred = model.predict(X_test)
# 计算准确率
MSE = mean_squared_error(y_test, y_pred)
RMSE = np.sqrt(MSE)
print('RMSE of {}:{} is {}'.format(job, label, str(RMSE)))
except Exception as e:
print(traceback.format_exc())
print(str(e))
2020-05-02 09:16:18 +00:00
models[job]['lock'].release()
2020-06-24 14:55:42 +00:00
def predict(job, features):
if job not in models or 'features' not in models[job]:
2020-05-02 09:16:18 +00:00
return -1, False
2020-06-24 14:55:42 +00:00
values = [job]
for feature in models[job]['features']:
values.append(features[feature])
2020-07-09 14:50:39 +00:00
testfile = './data/' + job + '.' + str(random.randint(1000, 9999)) + '.csv'
2020-06-24 14:55:42 +00:00
t = ['job']
t.extend(models[job]['features'])
2020-07-09 14:50:39 +00:00
with open(testfile, 'w', newline='') as csvfile:
2020-06-24 14:55:42 +00:00
spamwriter = csv.writer(
csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL
)
spamwriter.writerow(t)
2020-07-09 14:50:39 +00:00
with open(testfile, 'a+', newline='') as csvfile:
2020-06-24 14:55:42 +00:00
spamwriter = csv.writer(
csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL
)
spamwriter.writerow(values)
2020-07-09 14:50:39 +00:00
testdata = pd.read_csv(testfile)
2020-06-24 14:55:42 +00:00
test_feature = testdata.iloc[:, 1:]
predictions = {}
for label in models[job]['labels']:
# load the model from disk
modelfile = './data/' + job + '_' + label + '.sav'
2020-06-30 08:59:25 +00:00
if not os.path.exists(modelfile):
2020-07-09 14:50:39 +00:00
if os.path.exists(testfile):
os.remove(testfile)
2020-06-30 08:59:25 +00:00
return -1, False
2020-06-24 14:55:42 +00:00
model = pickle.load(open(modelfile, 'rb'))
preds = model.predict(test_feature)
predictions[label] = preds[0]
2020-07-09 14:50:39 +00:00
if os.path.exists(testfile):
os.remove(testfile)
2020-06-24 14:55:42 +00:00
return predictions, True
2020-05-02 09:16:18 +00:00
2020-04-29 14:18:18 +00:00
class MyHandler(BaseHTTPRequestHandler):
# Handler for the GET requests
def do_GET(self):
req = parse.urlparse(self.path)
query = parse.parse_qs(req.query)
if req.path == "/ping":
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes("pong", "utf-8"))
elif req.path == "/predict":
2020-05-02 09:39:54 +00:00
try:
job = query.get('job')[0]
2020-06-24 14:55:42 +00:00
features = json.loads(query.get('features')[0])
2020-05-02 09:39:54 +00:00
msg = {'code': 0, 'error': ""}
2020-05-02 09:29:33 +00:00
2020-06-24 14:55:42 +00:00
pred, success = predict(job, features)
2020-05-02 09:29:33 +00:00
2020-05-02 09:39:54 +00:00
if not success:
msg = {'code': 2, 'error': "Job " + job + " not exist"}
2020-05-02 11:48:21 +00:00
else:
2020-06-25 02:10:46 +00:00
msg = {'code': 0, 'error': "", "labels": pred}
2020-05-02 09:39:54 +00:00
except Exception as e:
2020-05-02 10:37:37 +00:00
track = traceback.format_exc()
print(track)
2020-05-02 09:39:54 +00:00
msg = {'code': 1, 'error': str(e)}
2020-05-02 09:16:18 +00:00
2020-04-29 14:29:32 +00:00
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
2020-04-29 15:32:09 +00:00
elif req.path == "/feed":
try:
job = query.get('job')[0]
2020-06-24 14:55:42 +00:00
features = json.loads(query.get('features')[0])
labels = json.loads(query.get('labels')[0])
lock.acquire()
flag = False
if job not in models:
models[job] = {
'lock': Lock(),
'features': list(features.keys()),
'labels': list(labels.keys())
}
flag = True
lock.release()
models[job]['lock'].acquire()
for label in models[job]['labels']:
values = [job]
for feature in models[job]['features']:
values.append(features[feature])
values.append(labels[label])
if flag:
t = ['job']
t.extend(models[job]['features'])
t.append(label)
with open('./data/' + job + '_' + label + '.csv', 'w', newline='') as csvfile:
spamwriter = csv.writer(
csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL
)
spamwriter.writerow(t)
with open('./data/' + job + '_' + label + '.csv', 'a+', newline='') as csvfile:
2020-05-02 09:16:18 +00:00
spamwriter = csv.writer(
csvfile, delimiter=',',
quotechar='|', quoting=csv.QUOTE_MINIMAL
)
2020-07-01 02:42:55 +00:00
spamwriter.writerow(values)
2020-06-24 14:55:42 +00:00
models[job]['lock'].release()
2020-05-02 09:16:18 +00:00
msg = {'code': 0, 'error': ""}
2020-04-29 15:32:09 +00:00
except Exception as e:
2020-05-02 09:16:18 +00:00
msg = {'code': 1, 'error': str(e)}
2020-06-24 14:55:42 +00:00
track = traceback.format_exc()
print(track)
2020-04-29 15:32:09 +00:00
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
2020-04-29 14:29:32 +00:00
elif req.path == "/train":
2020-04-29 15:22:56 +00:00
try:
2020-05-02 09:19:44 +00:00
job = query.get('job')[0]
t = Thread(target=train_models, name='train_models', args=(job,))
2020-04-29 15:22:56 +00:00
t.start()
2020-05-02 09:16:18 +00:00
msg = {'code': 0, 'error': ""}
2020-04-29 15:22:56 +00:00
except Exception as e:
2020-05-02 09:16:18 +00:00
msg = {'code': 1, 'error': str(e)}
2020-04-29 14:18:18 +00:00
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
else:
self.send_error(404, 'File Not Found: %s' % self.path)
2020-05-02 09:16:18 +00:00
# Handler for the POST requests
def do_POST(self):
if self.path == "/train2":
form = cgi.FieldStorage(
fp=self.rfile,
headers=self.headers,
environ={
'REQUEST_METHOD': 'POST',
'CONTENT_TYPE': self.headers['Content-Type'],
})
try:
job = form.getvalue('job')[0]
seq = form.getvalue('seq')[0]
t = Thread(target=train_models(), name='train_models', args=(job, seq,))
t.start()
msg = {"code": 0, "error": ""}
except Exception as e:
msg = {"code": 1, "error": str(e)}
self.send_response(200)
self.send_header('Content-type', 'application/json')
self.end_headers()
self.wfile.write(bytes(json.dumps(msg), "utf-8"))
else:
self.send_error(404, 'File Not Found: %s' % self.path)
2020-04-29 14:18:18 +00:00
if __name__ == '__main__':
try:
# Create a web server and define the handler to manage the
# incoming request
server = HTTPServer(('', PORT_NUMBER), MyHandler)
print('Started http server on port ', PORT_NUMBER)
# Wait forever for incoming http requests
server.serve_forever()
except KeyboardInterrupt:
print('^C received, shutting down the web server')
server.socket.close()