mirror of
https://github.com/newnius/YAO-optimizer.git
synced 2025-06-06 22:51:55 +00:00
update
This commit is contained in:
parent
1b99a877a1
commit
0339f52a39
@ -215,7 +215,7 @@
|
||||
<component name="PropertiesComponent">
|
||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||
<property name="aspect.path.notification.shown" value="true" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588327999670" />
|
||||
<property name="com.android.tools.idea.instantapp.provision.ProvisionBeforeRunTaskProvider.myTimeStamp" value="1588328026943" />
|
||||
<property name="go.gopath.indexing.explicitly.defined" value="true" />
|
||||
<property name="nodejs_interpreter_path.stuck_in_default_project" value="undefined stuck path" />
|
||||
<property name="nodejs_npm_path_reset_for_default_project" value="true" />
|
||||
|
36
serve.py
36
serve.py
@ -137,41 +137,35 @@ class Data:
|
||||
# add end
|
||||
|
||||
|
||||
def draw_yqy(config, origin_data, predict_norm_data, mean_yqy, std_yqy):
|
||||
return
|
||||
def draw_yqy(config2, origin_data, predict_norm_data, mean_yqy, std_yqy):
|
||||
label_norm_data = (origin_data - mean_yqy) / std_yqy
|
||||
assert label_norm_data.shape[0] == predict_norm_data.shape[
|
||||
0], "The element number in origin and predicted data is different"
|
||||
|
||||
print("dsa")
|
||||
# label_norm_data=label_norm_data[:,1]
|
||||
label_names = ['pre', 'main', 'post']
|
||||
label_name = 'high'
|
||||
label_column_num = 1
|
||||
|
||||
loss1 = \
|
||||
np.mean((label_norm_data[config.predict_day:][:, 5] - predict_norm_data[:-config.predict_day][0:]) ** 2,
|
||||
axis=0)[5]
|
||||
loss2 = \
|
||||
np.mean((label_norm_data[config.predict_day:][:, 6] - predict_norm_data[:-config.predict_day][0:]) ** 2,
|
||||
axis=0)[6]
|
||||
loss3 = \
|
||||
np.mean((label_norm_data[config.predict_day:][:, 7] - predict_norm_data[:-config.predict_day][0:]) ** 2,
|
||||
axis=0)[7]
|
||||
print("The mean squared error of stock {} is ".format(label_names[0]), loss1)
|
||||
print("The mean squared error of stock {} is ".format(label_names[1]), loss2)
|
||||
print("The mean squared error of stock {} is ".format(label_names[2]), loss3)
|
||||
loss = \
|
||||
np.mean((label_norm_data[config.predict_day:][:, 1] - predict_norm_data[:-config.predict_day][0:]) ** 2,
|
||||
axis=0)[1]
|
||||
print("The mean squared error of stock {} is ".format(label_name), loss)
|
||||
|
||||
# label_X = range(origin_data.data_num - origin_data.train_num - origin_data.start_num_in_test)
|
||||
# predict_X = [x + config.predict_day for x in label_X]
|
||||
|
||||
label_datas = label_norm_data * std_yqy + mean_yqy
|
||||
print("2")
|
||||
|
||||
predict_datas = predict_norm_data * std_yqy + mean_yqy
|
||||
label_data = label_norm_data[:, 1] * std_yqy[1] + mean_yqy[1]
|
||||
|
||||
print(label_datas)
|
||||
print(predict_datas)
|
||||
predict_data = predict_norm_data * std_yqy[1] + mean_yqy[1]
|
||||
|
||||
print(label_datas[-1])
|
||||
print(predict_datas[-1])
|
||||
print(label_data)
|
||||
print(predict_data)
|
||||
|
||||
print(label_data[-1])
|
||||
print(predict_data[-1])
|
||||
|
||||
|
||||
PORT_NUMBER = 8080
|
||||
|
Loading…
Reference in New Issue
Block a user